Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 158(15)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37093990

ABSTRACT

The retraction of thin films, as described by the Taylor-Culick (TC) theory, is subject to widespread debate, particularly for films at the nanoscale. We use non-equilibrium molecular dynamics simulations to explore the validity of the assumptions used in continuum models by tracking the evolution of holes in a film. By deriving a new mathematical form for the surface shape and considering a locally varying surface tension at the front of the retracting film, we reconcile the original theory with our simulation to recover a corrected TC speed valid at the nanoscale.

2.
Langmuir ; 38(15): 4669-4679, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35385282

ABSTRACT

The evolution of the liquid-vapor interface of a Lennard-Jones fluid is examined with molecular dynamics simulations using the intrinsic sampling method. Results suggest clear damping of the intrinsic profiles with increasing temperature. Investigating the surface stress distribution, we have identified a linear variation of the space-filling nature (fractal dimension) of the stress clusters at the intrinsic surface with increasing surface tension or, equivalently, with decreasing temperature. A percolation analysis of these stress networks indicates that the stress field is more disjointed at higher temperatures. This leads to more fragile (or poorly connected) interfaces which result in a reduction in surface tension.

3.
Langmuir ; 35(12): 4403-4411, 2019 Mar 26.
Article in English | MEDLINE | ID: mdl-30781955

ABSTRACT

In this study, we present experimental and theoretical analyses of evaporating a double-emulsion drop resting on a substrate. Multistage evaporation of the outer and inner droplet is witnessed. The complete evaporation of the outer drop and the initialization of the inner drop evaporation demonstrate an interesting transition dynamics. After the apparent completion of evaporation of the inner phase of a double-emulsion drop, surprisingly, formation of a daughter droplet is observed. We further investigated to hypothesize this phenomenon and achieved the formation of the daughter droplet for a single-phase drop as well. While engineering the "daughter drop formation" phenomena, we also proposed a way to obtain prolonged fixed contact line evaporation for a single-phase drop.

SELECTION OF CITATIONS
SEARCH DETAIL
...