Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 93: 146-154, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-27660016

ABSTRACT

Surface acoustic wave mediated transductions have been widely used in the sensors and actuators applications. In this study, a shear horizontal surface acoustic wave (SHSAW) was used for the detection of food pathogenic Escherichia coli O157:H7 (E.coli O157:H7), a dangerous strain among 225 E. coli unique serotypes. A few cells of this bacterium are able to cause young children to be most vulnerable to serious complications. Presence of higher than 1cfu E.coli O157:H7 in 25g of food has been considered as a dangerous level. The SHSAW biosensor was fabricated on 64° YX LiNbO3 substrate. Its sensitivity was enhanced by depositing 130.5nm thin layer of SiO2 nanostructures with particle size lesser than 70nm. The nanostructures act both as a waveguide as well as a physical surface modification of the sensor prior to biomolecular immobilization. A specific DNA sequence from E. coli O157:H7 having 22 mers as an amine-terminated probe ssDNA was immobilized on the thin film sensing area through chemical functionalization [(CHO-(CH2)3-CHO) and APTES; NH2-(CH2)3-Si(OC2H5)3]. The high-performance of sensor was shown with the specific oligonucleotide target and attained the sensitivity of 0.6439nM/0.1kHz and detection limit was down to 1.8femto-molar (1.8×10-15M). Further evidence was provided by specificity analysis using single mismatched and complementary oligonucleotide sequences.


Subject(s)
Biosensing Techniques/methods , DNA, Bacterial/isolation & purification , DNA, Single-Stranded/isolation & purification , Escherichia coli O157/isolation & purification , DNA, Bacterial/chemistry , DNA, Single-Stranded/chemistry , Escherichia coli O157/pathogenicity , Food Microbiology , Gold/chemistry , Humans , Nanostructures/chemistry , Silicon Dioxide/chemistry , Sound
2.
Anal Chim Acta ; 942: 74-85, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27720124

ABSTRACT

Dengue Virus (DENV) has become one of the most serious arthropod-borne viral diseases, causing death globally. The existing methods for DENV detection suffer from the late stage treatment due to antibodies-based detection which is feasible only after five days following the onset of the illness. Here, we demonstrated the highly effective molecular electronic based detection utilizing silicon nanowire (SiNW) integrated with standard complementary metal-oxide-semiconductor (CMOS) process as a sensing device for detecting deoxyribonucleic acid (DNA) related to DENV in an early stage diagnosis. To transform the fabricated devices as a functional sensing element, three-step procedure consist of SiNW surface modification, DNA immobilization and DNA hybridization were employed. The detection principle works by detecting the changes in current of SiNW which bridge the source and drain terminal to sense the immobilization of probe DNA and their hybridization with target DNA. The oxygen (O2) plasma was proposed as an effective strategy for increasing the binding amounts of target DNA by modified the SiNW surface. It was found that the detection limit of the optimized O2 plasma treated-SiNW device could be reduced to 1.985 × 10-14 M with a linear detection range of the sequence-specific DNA from 1.0 × 10-9 M to 1.0 × 10-13 M. In addition, the developed biosensor device was able to discriminate between complementary, single mismatch and non-complementary DNA sequences. This highly sensitive assay was then applied to the detection of reverse transcription-polymerase chain reaction (RT-PCR) product of DENV-DNA, making it as a potential method for disease diagnosis through electrical biosensor.


Subject(s)
Biosensing Techniques , DNA, Viral/analysis , Dengue Virus/isolation & purification , Nanowires , Oxygen/chemistry , Plasma Gases , Silicon/chemistry , Dengue Virus/genetics , Electricity , Microscopy, Electron, Scanning , Semiconductors , Spectroscopy, Fourier Transform Infrared
3.
Biosens Bioelectron ; 83: 106-14, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-27107147

ABSTRACT

In this paper, a silicon nanowire biosensor with novel molecular gate control has been demonstrated for Deoxyribonucleic acid (DNA) detection related to dengue virus (DENV). The silicon nanowire was fabricated using the top-down nanolithography approach, through nanostructuring of silicon-on-insulator (SOI) layers achieved by combination of the electron-beam lithography (EBL), plasma dry etching and size reduction processes. The surface of the fabricated silicon nanowire was functionalized by means of a three-step procedure involving surface modification, DNA immobilization and hybridization. This procedure acts as a molecular gate control to establish the electrical detection for 27-mers base targets DENV DNA oligomer. The electrical detection is based on the changes in current, resistance and conductance of the sensor due to accumulation of negative charges added by the immobilized probe DNA and hybridized target DNA. The sensitivity of the silicon nanowire biosensors attained was 45.0µAM(-1), which shows a wide-range detection capability of the sensor with respect to DNA. The limit of detection (LOD) achieved was approximately 2.0fM. The demonstrated results show that the silicon nanowire has excellent properties for detection of DENV with outstanding repeatability and reproducibility performances.


Subject(s)
Biosensing Techniques/instrumentation , DNA, Viral/analysis , Dengue Virus/isolation & purification , Immobilized Nucleic Acids/chemistry , Nanowires/chemistry , Silicon/chemistry , Dengue/diagnosis , Dengue/virology , Equipment Design , Humans , Lab-On-A-Chip Devices , Limit of Detection , Nanowires/ultrastructure , Reproducibility of Results , Transducers
4.
PLoS One ; 11(3): e0152318, 2016.
Article in English | MEDLINE | ID: mdl-27022732

ABSTRACT

A top-down nanofabrication approach is used to develop silicon nanowires from silicon-on-insulator (SOI) wafers and involves direct-write electron beam lithography (EBL), inductively coupled plasma-reactive ion etching (ICP-RIE) and a size reduction process. To achieve nanometer scale size, the crucial factors contributing to the EBL and size reduction processes are highlighted. The resulting silicon nanowires, which are 20 nm in width and 30 nm in height (with a triangular shape) and have a straight structure over the length of 400 µm, are fabricated precisely at the designed location on the device. The device is applied in biomolecule detection based on the changes in drain current (Ids), electrical resistance and conductance of the silicon nanowires upon hybridization to complementary target deoxyribonucleic acid (DNA). In this context, the scaled-down device exhibited superior performances in terms of good specificity and high sensitivity, with a limit of detection (LOD) of 10 fM, enables for efficient label-free, direct and higher-accuracy DNA molecules detection. Thus, this silicon nanowire can be used as an improved transducer and serves as novel biosensor for future biomedical diagnostic applications.


Subject(s)
Biosensing Techniques/methods , Nanotechnology/methods , Nanowires/chemistry , Silicon/chemistry , DNA, Complementary/analysis , Electricity , Electrons , Microfluidics , Microscopy, Atomic Force , Nanowires/ultrastructure , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...