Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(43): 23519-23526, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37862238

ABSTRACT

Conjugated macromolecules have a rich history in chemistry, owing to their chemical arrangements that intertwine physical and electronic properties. The continuing study and application of these systems, however, necessitates the development of atomically precise models that bridge the gap between molecules, polymers, and/or their blends. One class of conjugated polymers that have facilitated the advancement of structure-property relationships is discrete, precision oligomers that have remained an outstanding synthetic challenge with only a handful of reported examples. Here we show the first synthesis of molecular dyads featuring sequence-defined oligothiophene donors covalently linked a to small-molecule acceptor. These dyads serve as a platform for probing complex photophysical interactions involving sequence-defined oligomers. This assessment is facilitated through the unprecedented control of oligothiophene length- and sequence-dependent arrangement relative to the acceptor unit, made possible by the incorporation of hydroxyl-containing side chains at precise positions along the backbone through sequence-defined oligomerizations. We show that both the oligothiophene sequence and length play complementary roles in determining the transfer efficiency of photoexcited states. Overall, the work highlights the importance of the spatial arrangement of donor-acceptor systems that are commonly studied for a range of uses, including light harvesting and photocatalysis.

2.
J Chem Phys ; 159(7)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37602803

ABSTRACT

PbS semiconductor nanocrystals (NCs) have been heavily explored for infrared optoelectronics but can exhibit visible-wavelength quantum-confined optical gaps when sufficiently small (⌀ = 1.8-2.7 nm). However, small PbS NCs traditionally exhibited very broad ensemble absorption linewidths, attributed to poor size-heterogeneity. Here, harnessing recent synthetic advances, we report photophysical measurements on PbS ensembles that span this underexplored size range. We observe that the smallest PbS NCs pervasively exhibit lower brightness and anomalously accelerated photoluminescence decays-relative to the idealized photophysical models that successfully describe larger NCs. We find that effects of residual ensemble size-heterogeneity are insufficient to explain our observations, so we explore plausible processes that are intrinsic to individual nanocrystals. Notably, the anomalous decay kinetics unfold, surprisingly, over hundreds-of-nanosecond timescales. These are poorly matched to effects of direct carrier trapping or fine-structure thermalization but are consistent with non-radiative recombination linked to a dynamic surface. Thus, the progressive enhancement of anomalous decay in the smallest particles supports predictions that the surface plays an outsized role in exciton-phonon coupling. We corroborate this claim by showing that the anomalous decay is significantly remedied by the installation of a rigidifying shell. Intriguingly, our measurements show that the anomalous aspect of these kinetics is insensitive to temperature between T = 298 and 77 K, offering important experimental constraint on possible mechanisms involving structural fluctuations. Thus, our findings identify and map the anomalous photoluminescence kinetics that become pervasive in the smallest PbS NCs and call for targeted experiments and theory to disentangle their origin.

SELECTION OF CITATIONS
SEARCH DETAIL
...