Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Article in English | MEDLINE | ID: mdl-38963106

ABSTRACT

Liver and Breast cancer are ranked as the most prevailing cancers that cause high cancer-related mortality. As cancer is a life-threatening disease that affects the human population globally, there is a need to develop novel therapies. Among the available treatment options include radiotherapy, chemotherapy, surgery, and immunotherapy. The most superlative modern method is the use of plant-derived anticancer drugs that target the cancerous cells and inhibit their proliferation. Plant-derived compounds are generally considered safer than synthetic drugs/traditional therapies and could serve as potential novel targets to treat liver and breast cancer to revolutionize cancer treatment. Alkaloids and Polyphenols have been shown to act as anticancer agents through molecular approaches. They disrupt various cellular mechanisms, inhibit the production of cyclins and CDKs to arrest the cell cycle, and activate the DNA repairing mechanism by upregulating p53, p21, and p38 expression. In severe cases, when no repair is possible, they induce apoptosis in liver and breast cancer cells by activating caspase-3, 8, and 9 and increasing the Bax/Bcl-2 ratio. They also deactivate several signaling pathways, such as PI3K/AKT/mTOR, STAT3, NF-kB, Shh, MAPK/ERK, and Wnt/ß-catenin pathways, to control cancer cell progression and metastasis. The highlights of this review are the regulation of specific protein expressions that are crucial in cancer, such as in HER2 over-expressing breast cancer cells; alkaloids and polyphenols have been reported to reduce HER2 as well as MMP expression. This study reviewed more than 40 of the plant-based alkaloids and polyphenols with specific molecular targets against liver and breast cancer. Among them, Oxymatrine, Hirsutine, Piperine, Solamargine, and Brucine are currently under clinical trials by qualifying as potent anticancer agents due to lesser side effects. As a lot of research is there on anticancer compounds, there is a desideratum to compile data to move towards clinical trials phase 4 and control the prevalence of liver and breast cancer.

2.
Front Chem ; 12: 1424637, 2024.
Article in English | MEDLINE | ID: mdl-39021389

ABSTRACT

Introduction: Isatin, a heterocycle scaffold, is the backbone of many anticancer drugs and has previously been reported to engage multiple cellular targets and mechanisms, including angiogenesis, cell cycle, checkpoint pathways and multiple kinases. Here, we report that a novel isatin derivative, 5i, degrades estrogen receptor alpha (ERα) in estrogen-dependent breast cancer cells. This effect of the isatin nucleus has not been previously reported. Tamoxifen and fulvestrant represent standard therapy options in estrogen-mediated disease but have their own limitations. Isatin-based triple angiokinase inhibitor BIBF1120 (Nintedanib) and multikinase inhibitor Sunitinib (Sutent) have been approved by the FDA. Methods: Keeping this in view, we synthesized a series of N'-(1-benzyl-2-oxo-1, 2-dihydro-3H-indol-3-ylidene) hydrazide derivatives and evaluated them in vitro for antiproliferative activities in MCF-7 (ER+) cell line. We further investigated the effect of the most potent compound (5i) on the Erα through Western Blot Analysis. We used in silico pharmacokinetics prediction tools, particularly pkCSM tool, to assess the activity profiles of the compounds. Results and discussion: Compound 5i showed the best antiproliferative activity (IC50 value; 9.29 ± 0.97 µM) in these cells. Furthermore, 5i downregulated ERα protein levels in a dose-dependent manner in MCF-7. A multifaceted analysis of physicochemical properties through Data Warrior software revealed some prominent drug-like features of the synthesized compounds. The docking studies predicted the binding of ligands (compounds) with the target protein (ERα). Finally, molecular dynamics (MD) simulations indicated stable behavior of the protein-ligand complex between ERα and its ligand 5i. Overall, these results suggest that the new isatin derivative 5i holds promise as a new ERα degrader.

3.
Cell Rep ; 43(3): 113940, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38483906

ABSTRACT

Individual cell sensing of external cues has evolved through the temporal patterns in signaling. Since nuclear factor κB (NF-κB) signaling dynamics have been examined using a single subunit, RelA, it remains unclear whether more information might be transmitted via other subunits. Using NF-κB double-knockin reporter mice, we monitored both canonical NF-κB subunits, RelA and c-Rel, simultaneously in single macrophages by quantitative live-cell imaging. We show that signaling features of RelA and c-Rel convey more information about the stimuli than those of either subunit alone. Machine learning is used to predict the ligand identity accurately based on RelA and c-Rel signaling features without considering the co-activated factors. Ligand discrimination is achieved through selective non-redundancy of RelA and c-Rel signaling dynamics, as well as their temporal coordination. These results suggest a potential role of c-Rel in fine-tuning immune responses and highlight the need for approaches that will elucidate the mechanisms regulating NF-κB subunit specificity.


Subject(s)
NF-kappa B , Proto-Oncogene Proteins c-rel , Mice , Animals , NF-kappa B/metabolism , Ligands , Proto-Oncogene Proteins c-rel/metabolism , Transcription Factor RelA/metabolism , Signal Transduction , Macrophages/metabolism
4.
Medicine (Baltimore) ; 103(2): e35882, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38215142

ABSTRACT

Recovery capital is a construct central to the substance use disorder treatment and recovery field. Lack of structured instrument for its assessment in the local context necessitated the translation of the English self-assessment version of the "Brief Assessment of Recovery Capital" (BARC-10) scale to Bangla and the study of its psychometric properties. The objective was to develop a culturally adapted and validated Bangla version of the BARC-10 scale for substance use disorders patients. This study conducted in the period of January 2021 to March 2022 in the department of Psychiatry of a tertiary hospital and central drug addiction treatment center. Initially BARC-10 questionnaire was translated into Bangla (T1 and T2) by 2 separate translators and then synthesis of a single version (T12) was done based on the previous translations. After that 2 back translations (BT1 and BT2) were done by 2 more translators based on the synthesized version (T12). By reviewing all these forward and backward translations, an expert committee made the pre-final version after making some linguistic modification. Then data collection was done among 100 subjects who were selected purposively. Reliability was assessed by Cronbach alpha. Content validity, face validity and Construct validity by factor analysis were measured. Internal consistency measured by Cronbach alpha found was 0.846. No significant change in Cronbach alpha was observed following deleting any item. Confirmatory factor analysis revealed a good fit to data by a chi-square/df value1.33, RMSEA value 0.058. Kaiser-Meyer-Olkin value (.840) showed sampling adequacy. Exploratory factor analysis of the principal component identified 2 factors which had eigenvalues of more than 1. Scree plot also revealed similar factors. These 2 factors together explained 53.1% of the variance. All items were loaded under 2 factors after varimax rotation. The validated Bangla version of the BARC-10 demonstrated high internal reliability and validity. It can potentially be applied in "recovery-oriented" deaddiction service.


Subject(s)
Cross-Cultural Comparison , Translations , Humans , Psychometrics , Reproducibility of Results , Surveys and Questionnaires
5.
Bioorg Chem ; 143: 107094, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199139

ABSTRACT

Microtubule dynamics are critical for spindle assembly and chromosome segregation during cell division. Pharmacological inhibition of microtubule dynamics in cells causes prolonged mitotic arrest, resulting in apoptosis, an approach extensively employed in treating different types of cancers. The present study reports the synthesis of thirty-two novel bis-amides (SSE1901-SSE1932) and the evaluation of their antiproliferative activities. N-(1-oxo-3-phenyl-1-(phenylamino)propan-2-yl)benzamide (SSE1917) exhibited the most potent activity with GI50 values of 0.331 ± 0.01 µM in HCT116 colorectal and 0.48 ± 0.27 µM in BT-549 breast cancer cells. SSE1917 stabilized microtubules in biochemical and cellular assays, bound to taxol site in docking studies, and caused aberrant mitosis and G2/M arrest in cells. Prolonged treatment of cells with the compound increased p53 expression and triggered apoptotic cell death. Furthermore, SSE1917 suppressed the growth of both mouse and patient-derived human colon cancer organoids, highlighting its potential therapeutic value as an anticancer agent.


Subject(s)
Antineoplastic Agents , Tubulin Modulators , Tubulin , Animals , Humans , Mice , Amides/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , Apoptosis , Cell Line, Tumor , Cell Proliferation , Microtubules/metabolism , Mitosis , Tubulin/drug effects , Tubulin/metabolism , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology
6.
Chembiochem ; 25(1): e202300551, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37856284

ABSTRACT

Stress-activated signaling pathways orchestrate cellular behaviors and fates. Studying the precise role(s) of stress-activated protein kinases is challenging, because stress conditions induce adaptation and impose selection pressure. To meet this challenge, we have applied an optogenetic system with a single plasmid to express light-activated p38α or its upstream activator, MKK6, in conjunction with live-cell fluorescence microscopy. In starved cells, decaging of constitutively active p38α or MKK6 by brief exposure to UV light elicits rapid p38-mediated signaling, release of cytochrome c from mitochondria, and apoptosis with different kinetics. In parallel, light activation of p38α also suppresses autophagosome formation, similarly to stimulation with growth factors that activate PI3K/Akt/mTORC1 signaling. Active MKK6 negatively regulates serum-induced ERK activity, which is p38-independent as previously reported. Here, we reproduce that result with the one plasmid system and show that although decaging active p38α does not reduce basal ERK activity in our cells, it can block growth factor-stimulated ERK signaling in serum-starved cells. These results clarify the roles of MKK6 and p38α in dynamic signaling programs, which act in concert to actuate apoptotic death while suppressing cell survival mechanisms.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinases , Mitogen-Activated Protein Kinases , Mitogen-Activated Protein Kinases/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases , p38 Mitogen-Activated Protein Kinases , MAP Kinase Kinase 6/genetics
7.
Air Med J ; 43(1): 23-27, 2024.
Article in English | MEDLINE | ID: mdl-38154835

ABSTRACT

OBJECTIVE: Penetrating neck injuries (PNIs) can occur at multiple anatomic sites and involve airway, nerve, vascular, and gastrointestinal structures. They pose a unique challenge to clinicians, especially in the prehospital setting. Published guidance on the prehospital management of PNIs is limited, and there is no review of the current prehospital practice. METHODS: A retrospective electronic case note review of PNIs managed within 1 UK helicopter emergency medical service (HEMS) over a 7-year period was undertaken. Data were collected on the zone of injury, mechanism of injury, prehospital times, patient demographics, prehospital interventions, and on-scene mortality. RESULTS: Ninety-eight patients met the study inclusion criteria, 40% of whom had zone 2 neck injuries. Eighty-three percent were male with a mean age of 42 years. The predominant injury mechanism was interpersonal violence (51%) followed by self-harm (47%). Fifteen percent underwent prehospital emergency anesthesia, 17% underwent prehospital blood transfusion, and 30% had a hemostatic dressing applied. No patients underwent cervical spine immobilization. One percent underwent resuscitative thoracotomy. Five percent were pronounced life extinct after HEMS arrival following interventions by the HEMS team. CONCLUSION: Time-critical and emergent interventions in this select patient population must be minimal and focus on optimizing care during rapid transfer to the hospital. Airway and hemorrhagic pathologies must be managed, often concomitantly. Targeted injury prevention to reduce interpersonal violence must ensue. The author group intends to devise a national Delphi and derive consensus guidelines for the management of prehospital PNIs.


Subject(s)
Air Ambulances , Emergency Medical Services , Neck Injuries , Wounds, Penetrating , Humans , Male , Adult , Female , Retrospective Studies , Neck Injuries/therapy , Wounds, Penetrating/therapy , Aircraft
8.
ACS Med Chem Lett ; 14(10): 1369-1377, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37849542

ABSTRACT

Microtubules are dynamic structures that form spindle fibers during cell division; pharmacological inhibition of microtubule dynamics arrests cells in mitosis, leading to apoptosis, and they have been extensively used to treat various cancers. However, the efficacy of such drugs is often limited by multidrug resistance. This study synthesized and evaluated 30 novel derivatives of podophyllotoxin, a natural antimitotic compound, for their antiproliferative activities. Compound SSE1806 exhibited the most potent antiproliferative activity with GI50 values ranging from 1.29 ± 0.01 to 21.15 ± 2.1 µM in cancer cell lines of different origins; it directly inhibited microtubule polymerization, causing aberrant mitosis and G2/M arrest. Prolonged treatment with SSE1806 increased p53 expression, induced cell death in monolayer cultures, and reduced the growth of mouse- and patient-derived human colon cancer organoids. Importantly, SSE1806 overcame multidrug resistance in a cell line overexpressing MDR-1. Thus, SSE1806 represents a potential anticancer agent that can overcome multidrug resistance.

9.
Heliyon ; 9(9): e20077, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809545

ABSTRACT

The whiteflies of Bemisia tabaci complex, composed of >44 cryptic species, are economically important pests of tomatoes for their direct feeding and virus transmission. The present study aimed to evaluate the impact of leaf trichomes on the host selection and development of whitefly; comparative invasiveness between B. tabaci Q and A cryptic species; and the ability of weeds as hosts of the population of insect whitefly. We carried out our investigation through adult host selection and oviposition in multi-choice conditions, immature development and survival, and adult survival and oviposition in no-choice conditions. We investigated leaf trichomes type and densities on the leaves of four tomato varieties and two weed species. Results showed that the leaf trichomes of tomatoes and weeds impact the host selection and immature development differently on the cryptic species B. tabaci Q and A. In the multi-choice case, B. tabaci Q adults preferred tomato varieties Ao-Ni-Er and He-Fen for both settling and oviposition whereas B. tabaci A preferred Ao-Ni-Er, He-Fen, and Billy-Goat-Weed for settling but oviposited more eggs on both weed species Billy-Goat-Weed and False-Mallow. Both B. tabaci Q and A adults refused Ye-Sheng either settling or oviposition. In the case of immature development, B. tabaci Q developed faster than B. tabaci A. Concerning plant, B. tabaci Q developed faster on Ao-Ni-Er, He-Fen and Billy-Goat-Weed but B. tabaci A on Billy-Goat-Weed, False-Mallow and Ao-Ni-Er. The immature survival of Q was higher than that of A. Immature of B. tabaci Q survived well (68.6-86.8%) on all plants except Ye-Sheng (49.3%) but B. tabaci A survived very less (0-17.6%) on any tomatoes where 70.4% on Billy-Goat-Weed and 60.5% on False-Mallow. After seven days of adult infestation, both B. tabaci Q and A died on Ye-Sheng where 52.5-78.1% survivorships were observed on other plants. In seven days, B. tabaci Q laid more eggs compared to B. tabaci A. Considering the plants, both species laid more eggs on Ao-Ni-Er, He-Fen and False-Mallow, whereas the lowest number was laid on Ye-Sheng. The highest number of glandular trichome Type IV was observed on Ye-Sheng which showed resistance against both B. tabaci Q and A cryptic species. The cryptic species B. tabaci Q showed a wider range adaptation ability on plants than that of A. Weeds can play a significant role as an infestation source of whiteflies to tomatoes and other crops. These findings suggest that glandular trichomes may be used in plant breeding programmes for the development of whitefly-resistant crop cultivars.

10.
Bioorg Med Chem ; 94: 117479, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37769443

ABSTRACT

Chronic diseases such as cystic fibrosis, inflammatory bowel diseases, rheumatoid arthritis, and cardiovascular illness have been linked to a decrease in selenium levels and an increase in oxidative stress. Selenium is an essential trace element that exhibits antioxidant properties, with selenocysteine enzymes like glutathione peroxidase being particularly effective at reducing peroxides. In this study, a series of synthetic organoselenium compounds were synthesized and evaluated for their potential antioxidant activities. The new selenohydantoin molecules were inspired by selenoneine and synthesized using straightforward methods. Their antioxidant potential was evaluated and proven using classical radical scavenging and metal-reducing methods. The selenohydantoin derivatives exhibited glutathione peroxidase-like activity, reducing hydroperoxides. Theoretical calculations using Density Functional Theory (DFT) revealed the selenone isomer to be the only one occurring in solution, with selenolate as a possible tautomeric form in the presence of a basic species. Cytocompatibility assays indicated that the selenohydantoin derivatives were non-toxic to primary human aortic smooth muscle cells, paving the way for further biological evaluations of their antioxidant activity. The results suggest that selenohydantoin derivatives with trifluoro-methyl (-CF3) and chlorine (-Cl) substituents have significant activities and could be potential candidates for further biological trials. These compounds may contribute to the development of effective therapies for chronic diseases such cardiovascular diseases.

11.
Eur J Med Chem ; 259: 115701, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37591149

ABSTRACT

Antibiotic resistance is a growing public health concern. The quest to understand the underlying mechanisms of drug resistance needs to be accompanied by an expanded arsenal of drugs. This calls for the development of new compounds with anti-bacterial properties. The ease of functionalization of the pyrimidine core, to produce structurally distinct compound libraries, has made pyrimidine a privileged structure for identifying anti-bacterial hits. The activity of pyrimidine derivatives can be attributed to the various subunits linked with the main core, especially at C-2 or C-4 or C-6. Particularly, presence of NH2 attached to C-2 of the pyrimidine nucleus has been shown to enhance the anti-bacterial activity against pathogenic Gram-positive and Gram-negative bacteria. The diversity of synthetic routes used for the synthesis of such compounds, the reported biological activities, and a growing need to develop novel anti-bacterial agents warrant a review that presents recent reports on the synthesis and anti-bacterial activities of pyrimidine-containing compounds.


Subject(s)
Anti-Bacterial Agents , Gram-Negative Bacteria , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria , Antihypertensive Agents , Cell Nucleus
12.
ACS Omega ; 8(31): 28499-28510, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37576679

ABSTRACT

Small organic molecules with interesting optical and electrochemical properties find applications as organic luminescent materials. In this work, we report the synthesis of novel chalcones with D-A-D and D-A-D-A architecture, followed by their optical, electrochemical, and computational studies. The absorption band of these compounds occurs at 360-480 nm with emission maxima appearing around 513-552 nm. The large Stokes shifts (Δλ) for all compounds (90-132 nm) suggest intramolecular charge transfer (ICT) in the excited states. The molar absorptivity and fluorescence quantum yields were found to be in the range of 1.7-4.26 × 104 M-1 cm-1 and 0.29-0.39, respectively. The electrochemical parameters were determined by using cyclic voltammetry (CV). Density functional theory (DFT) calculations of all compounds were made by using B3LYP/G (d,p) functionals in chloroform and were found to have a good correlation with experimental results. Preliminary studies of absorption, photoluminescence, CV, and their theoretical correlation suggest that these compounds may be optimized for their applications in optoelectronics, sensing, and bioimaging.

13.
Environ Sci Pollut Res Int ; 30(26): 69550-69563, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37140855

ABSTRACT

This paper critically discusses the importance of cooperative environmental governance (CEG) for efficient waste management and waste-to-energy (WtE) generation in the context of growing urban South Asia. Focusing on Bangladesh, India and Pakistan experiences, the paper reveals that even though much progress has been done in the urbanisation in the selected countries, the process of waste management (mainly municipal solid waste) has not been effective due to low level of local inclusion. As a result, the WtE generation potential has not been realised to its fullest. In addition, it has been argued that institutional and social reforms are extremely important for strengthening the CEG, and it will eventually lead to effective and optimal WtE generation in the urban cities of the selected South Asian countries for green transition and urban sustainability. Finally, an integrated solid waste management framework has been formulated for policy implications in South Asia.


Subject(s)
Refuse Disposal , Waste Management , Asia, Southern , Cities , Conservation of Natural Resources , Environmental Policy , Sustainable Growth , Solid Waste/analysis
14.
Mol Biol Cell ; 34(6): ar60, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36884295

ABSTRACT

The extracellular signal-regulated kinase (ERK) signaling pathway plays prominent roles in cell growth, proliferation, and differentiation. ERK signaling is dynamic, involving phosphorylation/dephosphorylation, nucleocytoplasmic shuttling, and interactions with scores of protein substrates in the cytosol and in the nucleus. Live-cell fluorescence microscopy using genetically encoded ERK biosensors offers the potential to infer those dynamics in individual cells. In this study, we have monitored ERK signaling using four commonly used translocation- and Förster resonance energy transfer-based biosensors in a common cell stimulation context. Consistent with previous reports, we found that each biosensor responds with unique kinetics; it is clear that there is not a single dynamic signature characterizing the complexity of ERK phosphorylation, translocation, and kinase activity. In particular, the widely adopted ERK Kinase Translocation Reporter (ERKKTR) gives a readout that reflects ERK activity in both compartments. Mathematical modeling offers an interpretation of the measured ERKKTR kinetics, in relation to cytosolic and nuclear ERK activity, and suggests that biosensor-specific dynamics substantially influence the measured output.


Subject(s)
Biosensing Techniques , Extracellular Signal-Regulated MAP Kinases , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System , Phosphorylation , Signal Transduction
15.
Life (Basel) ; 13(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36983891

ABSTRACT

Flavonoids, isoflavonoids, neoflavonoids, and their various subcategories are polyphenolics-an extensive class of natural products. These compounds are bioactive and display multiple activities, including anticancer, antibacterial, antiviral, antioxidant, and neuroprotective activities. Thus, these compounds can serve as leads for therapeutic agents or targets for complex synthesis; they are coveted and routinely isolated, characterized, biologically evaluated, and synthesized. However, data regarding the compounds' sources, isolation procedures, structural novelties, bioactivities, and synthetic schemes are often dispersed and complex, a dilemma this review aims to address. To serve as an easily accessible guide for researchers wanting to apprise themselves of the latest advancements in this subfield, this review summarizes seventy-six (76) articles published between 2016 and 2022 that detail the isolation and characterization of two hundred and forty-nine (249) novel compounds, the total and semisyntheses of thirteen (13) compounds, and reappraisals of the structures of twenty (20) previously reported compounds and their bioactivities. This article also discusses new synthetic methods and enzymes capable of producing or modifying flavonoids, isoflavonoids, or neoflavonoids.

16.
Mini Rev Med Chem ; 23(10): 1090-1117, 2023.
Article in English | MEDLINE | ID: mdl-36029080

ABSTRACT

Selenium (Se), a semi-metallic element, has chemical properties similar to sulfur; however, it has comparatively low electronegativity as well as a large atomic radius than sulfur. These features bestow selenium-containing compounds with extraordinary reactivity, sensitivity, and potential for several applications like chemical alteration, protein engineering, chemical (semi)synthesis, etc. Organoselenium chemistry is emerging fastly, however, examples of effective incorporation of Se into the peptides are relatively scarce. Providentially, there has been a drastic interest in synthesizing and applying selenoproteins and selenium-containing peptides over the last few decades. In this minireview, the synthetic methodologies of selenium-containing peptides and a brief description of their chemistry and biological activities are summarized. These methodologies enable access to various natural and unnatural selenium-containing peptides that have been used in a range of applications, from modulating protein characteristics to structure-activity relationship (SAR) studies for applications in nutraceuticals and drug development. This review aims at the audience interested in learning about the synthesis as well as will open new dimensions for their future research by aiding in the design of biologically interesting selenium-containing peptides.


Subject(s)
Peptides , Selenium Compounds/chemical synthesis , Selenium Compounds/chemistry , Peptides/chemical synthesis , Peptides/chemistry , Humans , Animals , Sulfur/chemistry , Solutions/chemistry
17.
Mini Rev Med Chem ; 23(4): 429-451, 2023.
Article in English | MEDLINE | ID: mdl-35993466

ABSTRACT

Centrosome abnormalities are the hallmark of cancer. How it affects tumorigenesis is still a mystery. However, the presence of more than two centrosomes at the onset of mitosis often leads to chromosomal instability and subsequent tumorigenesis. Unlike normal cells that undergo repair or apoptosis in response to this instability, cancer cells learn to cope with supernumerary centrosomes through various mechanisms and survive. Centrosome clustering is the most prevalent mechanism, allowing the cancer cells to form two daughter cells through a pseudo-bipolar spindle. Since healthy cells are devoid of the mechanisms involved in clustering, the de-clustering of centrosomes can be considered a promising approach to selectively eliminate cells with extra centrosomes. Several proteins such as PARP, KIFC1, Hsp70, Cortical actin, APC/C-CDH1 complex and Eg5 have been discussed in this review which participate in centrosome clustering, and the inhibition of these proteins can facilitate in impeding tumor growth specifically by declustering centrosomes. In this review, we also present the role of the centrosome in the cell cycle, centrosome amplification, clustering mechanism and reported centrosome de-clustering agents to present the current state of work in the field.


Subject(s)
Centrosome , Neoplasms , Humans , Centrosome/metabolism , Centrosome/pathology , Neoplasms/pathology , Spindle Apparatus , Carcinogenesis , Cluster Analysis
18.
Cell Rep ; 41(8): 111682, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36417863

ABSTRACT

In vitro studies suggest that mapping the spatiotemporal complexity of nuclear factor κB (NF-κB) signaling is essential to understanding its function. The lack of tools to directly monitor NF-κB proteins in vivo has hindered such efforts. Here, we introduce reporter mice with the endogenous RelA (p65) or c-Rel labeled with distinct fluorescent proteins and a double knockin with both subunits labeled. Overcoming hurdles in simultaneous live-cell imaging of RelA and c-Rel, we show that quantitative features of signaling reflect the identity of activating ligands, differ between primary and immortalized cells, and shift toward c-Rel in microglia from aged brains. RelA:c-Rel heterodimer is unexpectedly depleted in the nuclei of stimulated cells. Trajectories of subunit co-expression in immune lineages reveal a reduction at key cell maturation stages. These results demonstrate the power of these reporters in gaining deeper insights into NF-κB biology, with the spectral complementarity of the labeled NF-κB proteins enabling diverse applications.


Subject(s)
NF-kappa B , Signal Transduction , Mice , Animals , NF-kappa B/metabolism , Cell Nucleus/metabolism , Aging , Cell Line
19.
Molecules ; 27(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36364413

ABSTRACT

Indole alkaloids represent a large subset of natural products, with more than 4100 known compounds. The majority of these alkaloids are biologically active, with some exhibiting excellent antitumor, antibacterial, antiviral, antifungal, and antiplasmodial activities. Consequently, the natural products of this class have attracted considerable attention as potential leads for novel therapeutics and are routinely isolated, characterized, and profiled to gauge their biological potential. However, data on indole alkaloids, their various structures, and bioactivities are complex due to their diverse sources, such as plants, fungi, bacteria, sponges, tunicates, and bryozoans; thus, isolation methods produce an incredible trove of information. The situation is exacerbated when synthetic derivatives, as well as their structures, bioactivities, and synthetic schemes, are considered. Thus, to make such data comprehensive and inform researchers about the current field's state, this review summarizes recent reports on novel indole alkaloids. It deals with the isolation and characterization of 250 novel indole alkaloids, a reappraisal of previously reported compounds, and total syntheses of indole alkaloids. In addition, several syntheses and semi-syntheses of indole-containing derivatives and their bioactivities are reported between January 2019 and July 2022.


Subject(s)
Alkaloids , Biological Products , Biological Products/pharmacology , Biological Products/chemistry , Indole Alkaloids/pharmacology , Indole Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Fungi/chemistry , Plants
20.
Nucleic Acids Res ; 50(19): 11273-11284, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36259663

ABSTRACT

Liquid-liquid phase separation (LLPS) has assumed a prominent role in biological cell systems, where it underpins the formation of subcellular compartments necessary for cell function. We investigated the underlying mechanism of LLPS in virus infected cells, where virus inclusion bodies are formed by an RNA-binding phosphoprotein (NS2) of Bluetongue virus to serve as sites for subviral particle assembly and virus maturation. We show that NS2 undergoes LLPS that is dependent on protein phosphorylation and RNA-binding and that LLPS occurrence is accompanied by a change in protein secondary structure. Site-directed mutagenesis identified two critical arginine residues in NS2 responsible for specific RNA binding and thus for NS2-RNA complex driven LLPS. Reverse genetics identified the same residues as essential for VIB assembly in infected cells and virus viability. Our findings suggest that a specific arginine-RNA interaction in the context of a phosphorylated state drives LLPS in this, and possibly other, virus infections.


Subject(s)
Bluetongue virus , Virus Assembly , Animals , Phosphorylation , Virus Assembly/genetics , Bluetongue virus/genetics , RNA/metabolism , Arginine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...