Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Imaging ; 9(10)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37888323

ABSTRACT

Nowadays, wireless sensor networks (WSNs) have a significant and long-lasting impact on numerous fields that affect all facets of our lives, including governmental, civil, and military applications. WSNs contain sensor nodes linked together via wireless communication links that need to relay data instantly or subsequently. In this paper, we focus on unmanned aerial vehicle (UAV)-aided data collection in wireless sensor networks (WSNs), where multiple UAVs collect data from a group of sensors. The UAVs may face some static or moving obstacles (e.g., buildings, trees, static or moving vehicles) in their traveling path while collecting the data. In the proposed system, the UAV starts and ends the data collection tour at the base station, and, while collecting data, it captures images and videos using the UAV aerial camera. After processing the captured aerial images and videos, UAVs are trained using a YOLOv8-based model to detect obstacles in their traveling path. The detection results show that the proposed YOLOv8 model performs better than other baseline algorithms in different scenarios-the F1 score of YOLOv8 is 96% in 200 epochs.

2.
Bioorg Med Chem ; 24(15): 3267-75, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27301675

ABSTRACT

One of the hurdles in the discovery of antibiotics is the difficulty of linking antibacterial compounds to their cellular targets. Our laboratory has employed a genome-wide approach of over-expressing essential genes in order to identify cellular targets of antibacterial inhibitors. Our objective in this project was to develop and validate a more sensitive disk diffusion based platform of target identification (Target Identification Platform for Antibacterials version 2; TIPA II) using a collection of cell clones in an Escherichia coli mutant (AS19) host with increased outer membrane permeability. Five known antibiotics/inhibitors and 28 boron heterocycles were tested by TIPA II assay, in conjunction with the original assay TIPA. The TIPA II was more sensitive than TIPA because eight boron heterocycles previously found to be inactive to AG1 cells in TIPA assays exhibited activity to AS19 cells. For 15 boron heterocycles, resistant colonies were observed within the zones of inhibition only on the inducing plates in TIPA II assays. DNA sequencing confirmed that resistant clones harbor plasmids with fabI gene as insert, indicating that these boron heterocycles all target enoyl ACP reductase. Additionally, cell-based assays and dose response curved obtained indicated that for two boron heterocycle inhibitors, the fabI cell clone in AG1 (wild-type) host cells exhibited at least 11 fold more resistance under induced conditions than under non-induced conditions. Moreover, TIPA II also identified cellular targets of known antibacterial inhibitors triclosan, phosphomycin, trimethoprim, diazaborine and thiolactomycin, further validating the utility of the new system.


Subject(s)
Boron Compounds/chemistry , Heterocyclic Compounds/chemistry , Boron Compounds/pharmacology , Drug Delivery Systems/methods , Escherichia coli/drug effects , Heterocyclic Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...