Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38792083

ABSTRACT

A high-efficiency nickel-doped porous biochar (PCNi3) has been successfully synthesized from chestnut shell waste via a two-step chemical activation treatment with H3PO4. The influences of microstructure, surface morphology, elemental composition, surface functional groups, specific surface area, porosity, pore-size distribution, and chemical properties of the surface state on the removal of Cr (VI) from water were thoroughly investigated by using XRD, FESEM, FTIR, Raman, BET, and XPS testing methods, N2 adsorption, and XPS testing techniques respectively. The results indicate that the treatment of H3PO4 activation and nickel doping can effectively improve microstructure characteristics, thus promoting Cr (VI) adsorption capacity. The effects of initial solution pH, solution concentration, time, and temperature on remediation are revealed. The Cr (VI) uptake experiments imply that the adsorption curves of PCNi3 fit well with the Freundlich model, the pseudo-second-order kinetic model, and the Elovich model. The adsorption process of PCNi3 can be regarded as a spontaneous endothermic reaction limited by diffusion among particles and porosity. The adsorption mechanisms of PCNi3 are ion exchange, complexation, electrostatic adsorption, and coprecipitation with the assistance of surface active sites, porosity, Ni0 particles, and Ni7P3. With these advantages, PCNi3 reveals an extraordinary Cr (VI) removal capacity and a strong ability to reduce Cr (VI) to Cr (III).

2.
Chem Biodivers ; 20(8): e202300510, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37471642

ABSTRACT

Nanotechnology is gaining enormous attention as the most dynamic research area in science and technology. It involves the synthesis and applications of nanomaterials in diverse fields including medical, agriculture, textiles, food technology, cosmetics, aerospace, electronics, etc. Silver nanoparticles (AgNPs) have been extensively used in such applications due to their excellent physicochemical, antibacterial, and biological properties. The use of plant extract as a biological reactor is one of the most promising solutions for the synthesis of AgNPs because this process overcomes the drawbacks of physical and chemical methods. This review article summarizes the plant-mediated synthesis process, the probable reaction mechanism, and the colorimetric sensing applications of AgNPs. Plant-mediated synthesis parameters largely affect the surface plasmon resonance (SPR) characteristic due to the changes in the size and shape of AgNPs. These changes in the size and shape of plant-mediated AgNPs are elaborately discussed here by analyzing the surface plasmon resonance characteristics. Furthermore, this article also highlights the promising applications of plant-mediated AgNPs in sensing applications regarding the detection of mercury, hydrogen peroxide, lead, and glucose. Finally, it describes the future perspective of plant-mediated AgNPs for the development of green chemistry.


Subject(s)
Metal Nanoparticles , Surface Plasmon Resonance , Silver/chemistry , Colorimetry/methods , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/chemistry , Plant Extracts/chemistry , Green Chemistry Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...