Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Biol Eng Comput ; 58(7): 1467-1482, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32363555

ABSTRACT

Many studies in the rigid gas permeable (RGP) lens fitting field have focused on providing the best fit for patients with irregular astigmatism, a challenging issue. Despite the ease and accuracy of fitting in the current fitting methods, no studies have provided a high-pace solution with the final best fit to assist experts. This work presents a deep learning solution for identifying features in Pentacam four refractive maps and RGP base curve identification. An authentic dataset of 247 samples of Pentacam four refractive maps was gathered, providing a multi-view image of the corneal structure. Scratch-based convolutional neural network (CNN) architectures and well-known CNN architectures such as AlexNet, GoogLeNet, and ResNet have been used to extract features and transfer learning. Features are aggregated through a fusion technique. Based on a comparison of means square error (MSE) of normalized labels, the multi-view scratch-based CNN provided R-squared of 0.849, 0.846, 0.835, and 0.834 followed by GoogLeNet, comparable with current methods. Transfer learning outperforms various scratch-based CNN models, through which proper specifications some scratch-based models were able to increase coefficient of determinations. CNNs on multi-view Pentacam images have enabled fast detection of the RGP lens base curve, higher patient satisfaction, and reduced chair time. Graphical abstract The Pentacam four refractive maps is learned by the proposed scratch-based and transfer learning-based CNN methodology. The deep network-based solutions enable identification of rigid gas permeable lens for patients with irregular astigmatism.


Subject(s)
Contact Lenses , Deep Learning , Astigmatism , Contact Lenses, Extended-Wear , Corneal Pachymetry , Humans , Neural Networks, Computer
2.
IEEE Trans Pattern Anal Mach Intell ; 30(11): 1902-12, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18787239

ABSTRACT

We define localized content-based image retrieval as a CBIR task where the user is only interested in a portion of the image, and the rest of the image is irrelevant. In this paper we present a localized CBIR system, Accio, that uses labeled images in conjunction with a multiple-instance learning algorithm to first identify the desired object and weight the features accordingly, and then to rank images in the database using a similarity measure that is based upon only the relevant portions of the image. A challenge for localized CBIR is how to represent the image to capture the content. We present and compare two novel image representations, which extend traditional segmentation-based and salient point-based techniques respectively, to capture content in a localized CBIR setting.


Subject(s)
Database Management Systems , Databases, Factual , Documentation/methods , Image Interpretation, Computer-Assisted/methods , Information Storage and Retrieval/methods , Pattern Recognition, Automated/methods , Radiology Information Systems , Algorithms , Artificial Intelligence , Image Enhancement/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...