Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Prog Biophys Mol Biol ; 190: 1-18, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38754703

ABSTRACT

The paper presents a review of mechanistic modelling studies of DNA damage and DNA repair, and consequences to follow in mammalian cell nucleus. We hypothesize DNA deletions are consequences of repair of double strand breaks leading to the modifications of genome that play crucial role in long term development of genetic inheritance and diseases. The aim of the paper is to review formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double strand breaks and deletions in damaged human genome from endogenous and exogenous events. The model of the cell nucleus presented enables simulation of DNA damage at molecular level identifying the spectrum of damage induced in all chromosomal territories and loops. Our mechanistic modelling of DNA repair for double stand breaks (DSB), single strand breaks (SSB) and base damage (BD), shows the complexity of DNA damage is responsible for the longer repair times and the reason for the biphasic feature of mammalian cells repair curves. In the absence of experimentally determined data, the mechanistic model of repair predicts the in vivo rate constants for the proteins involved in the repair of DSB, SSB, and of BD.

2.
Life Sci Space Res (Amst) ; 36: 90-104, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36682835

ABSTRACT

For missions beyond low Earth orbit to the moon or Mars, space explorers will encounter a complex radiation field composed of various ion species with a broad range of energies. Such missions pose significant radiation protection challenges that need to be solved in order to minimize exposures and associated health risks. An innovative galactic cosmic ray simulator (GCRsim) was recently developed at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The GCRsim technology is intended to represent major components of the space radiation environment in a ground analog laboratory setting where it can be used to improve understanding of biological risks and serve as a testbed for countermeasure development and validation. The current GCRsim consists of 33 energetic ion beams that collectively simulate the primary and secondary GCR field encountered by humans in space over the broad range of particle types, energies, and linear energy transfer (LET) of interest to health effects. A virtual workshop was held in December 2020 to assess the status of the NASA baseline GCRsim. Workshop attendees examined various aspects of simulator design, with a particular emphasis on beam selection strategies. Experimental results, modeling approaches, areas of consensus, and questions of concern were also discussed in detail. This report includes a summary of the GCRsim workshop and a description of the current status of the GCRsim. This information is important for future advancements and applications in space radiobiology.


Subject(s)
Cosmic Radiation , Radiation Protection , Space Flight , United States , Humans , United States National Aeronautics and Space Administration , Radiobiology , Carmustine
3.
Cell Rep Methods ; 2(2): 100169, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35474967

ABSTRACT

Clonogenic survival assay constitutes the gold standard method for quantifying radiobiological effects. However, it neglects cellular radiation response variability and heterogeneous energy deposition by ion beams on the microscopic scale. We introduce "Cell-Fit-HD4D" a biosensor that enables a deconvolution of individual cell fate in response to the microscopic energy deposition as visualized by optical microscopy. Cell-Fit-HD4D enables single-cell dosimetry in clinically relevant complex radiation fields by correlating microscopic beam parameters with biological endpoints. Decrypting the ion beam's energy deposition and molecular effects at the single-cell level has the potential to improve our understanding of radiobiological dose concepts as well as radiobiological study approaches in general.


Subject(s)
Biosensing Techniques , Heavy Ion Radiotherapy , Radiometry/methods , Heavy Ion Radiotherapy/methods
4.
Med Phys ; 47(1): 272-281, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31677156

ABSTRACT

PURPOSE: High energetic carbon (C-) ion beams undergo nuclear interactions with tissue, producing secondary nuclear fragments. Thus, at depth, C-ion beams are composed of a mixture of different particles with different linear energy transfer (LET) values. We developed a technique to enable isolation of DNA damage response (DDR) in mixed radiation fields using beam line microscopy coupled with fluorescence nuclear track detectors (FNTDs). METHODS: We imaged live cells on a coverslip made of FNTDs right after C-ion, proton or photon irradiation using an in-house built confocal microscope placed in the beam path. We used the FNTD to link track traversals with DNA damage and separated DNA damage induced by primary particles from fragments. RESULTS: We were able to spatially link physical parameters of radiation tracks to DDR in live cells to investigate spatiotemporal DDR in multi-ion radiation fields in real time, which was previously not possible. We demonstrated that the response of lesions produced by the high-LET primary particles associates most strongly with cell death in a multi-LET radiation field, and that this association is not seen when analyzing radiation induced foci in aggregate without primary/fragment classification. CONCLUSIONS: We report a new method that uses confocal microscopy in combination with FNTDs to provide submicrometer spatial-resolution measurements of radiation tracks in live cells. Our method facilitates expansion of the radiation-induced DDR research because it can be used in any particle beam line including particle therapy beam lines. CATEGORY: Biological Physics and Response Prediction.


Subject(s)
Carbon , DNA Damage , Fluorescent Dyes/metabolism , Linear Energy Transfer , Cell Line, Tumor , Cell Survival , Humans , Molecular Imaging , Time Factors
5.
Radiat Res ; 183(5): 525-40, 2015 May.
Article in English | MEDLINE | ID: mdl-25909147

ABSTRACT

The aim of this report is to present the spectrum of initial radiation-induced cellular DNA damage [with particular focus on non-double-strand break (DSB) damage] generated by computer simulations. The radiation types modeled in this study were monoenergetic electrons (100 eV-1.5 keV), ultrasoft X-ray photons Ck, AlK and TiK, as well as some selected ions including 3.2 MeV/u proton; 0.74 and 2.4 MeV/u helium ions; 29 MeV/u nitrogen ions and 950 MeV/u iron ions. Monte Carlo track structure methods were used to simulate damage induction by these radiation types in a cell-mimetic condition from a single-track action. The simulations took into account the action of direct energy deposition events and the reaction of hydroxyl radicals on atomistic linear B-DNA segments of a few helical turns including the water of hydration. Our results permitted the following conclusions: a. The absolute levels of different types of damage [base damage, simple and complex single-strand breaks (SSBs) and DSBs] vary depending on the radiation type; b. Within each damage class, the relative proportions of simple and complex damage vary with radiation type, the latter being higher with high-LET radiations; c. Overall, for both low- and high-LET radiations, the ratios of the yields of base damage to SSBs are similar, being about 3.0 ± 0.2; d. Base damage contributes more to the complexity of both SSBs and DSBs, than additional SSB damage and this is true for both low- and high-LET radiations; and e. The average SSB/DSB ratio for low-LET radiations is about 18, which is about 5 times higher than that for high-LET radiations. The hypothesis that clustered DNA damage is more difficult for cells to repair has gained currency among radiobiologists. However, as yet, there is no direct in vivo experimental method to validate the dependence of kinetics of DNA repair on DNA damage complexity (both DSB and non-DSB types). The data on the detailed spectrum of DNA damage presented here, in particular the non-DSB type, provide a good basis for testing mechanistic models of DNA repair kinetics such as base excision repair.


Subject(s)
DNA Damage , DNA/radiation effects , Monte Carlo Method , Radiation, Ionizing
6.
DNA Repair (Amst) ; 22: 89-103, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25117268

ABSTRACT

This paper presents a mechanistic model of base excision repair (BER) pathway for the repair of single-stand breaks (SSBs) and oxidized base lesions produced by ionizing radiation (IR). The model is based on law of mass action kinetics to translate the biochemical processes involved, step-by-step, in the BER pathway to translate into mathematical equations. The BER is divided into two subpathways, short-patch repair (SPR) and long-patch repair (LPR). SPR involves in replacement of single nucleotide via Pol ß and ligation of the ends via XRCC1 and Ligase III, while LPR involves in replacement of multiple nucleotides via PCNA, Pol δ/ɛ and FEN 1, and ligation via Ligase I. A hallmark of IR is the production of closely spaced lesions within a turn of DNA helix (named complex lesions), which have been attributed to a slower repair process. The model presented considers fast and slow component of BER kinetics by assigning SPR for simple lesions and LPR for complex lesions. In the absence of in vivo reaction rate constants for the BER proteins, we have deduced a set of rate constants based on different published experimental measurements including accumulation kinetics obtained from UVA irradiation, overall SSB repair kinetic experiments, and overall BER kinetics from live-cell imaging experiments. The model was further used to calculate the repair kinetics of complex base lesions via the LPR subpathway and compared to foci kinetic experiments for cells irradiated with γ rays, Si, and Fe ions. The model calculation show good agreement with experimental measurements for both overall repair and repair of complex lesions. Furthermore, using the model we explored different mechanisms responsible for inhibition of repair when higher LET and HZE particles are used and concluded that increasing the damage complexity can inhibit initiation of LPR after the AP site removal step in BER.


Subject(s)
DNA Repair , Models, Genetic , Ultraviolet Rays , Animals , DNA Breaks, Single-Stranded , Humans
7.
Mutat Res ; 753(2): 114-130, 2013.
Article in English | MEDLINE | ID: mdl-23948232

ABSTRACT

While much is known about radiation-induced DNA double-strand breaks (DSBs) and their repair, the question of how deletions of different sizes arise as a result of the processing of DSBs by the cell's repair systems has not been fully answered. In order to bridge this gap between DSBs and deletions, we critically reviewed published data on mechanisms pertaining to: (a) repair of DNA DSBs (from basic studies in this area); (b) formation of naturally occurring structural variation (SV) - especially of deletions - in the human genome (from genomic studies) and (c) radiation-induced mutations and structural chromosomal aberrations in mammalian somatic cells (from radiation mutagenesis and radiation cytogenetic studies). The specific aim was to assess the relative importance of the postulated mechanisms in generating deletions in the human genome and examine whether empirical data on radiation-induced deletions in mouse germ cells are consistent with predictions of these mechanisms. The mechanisms include (a) NHEJ, a DSB repair process that does not require any homology and which functions in all stages of the cell cycle (and is of particular relevance in G0/G1); (b) MMEJ, also a DSB repair process but which requires microhomology and which presumably functions in all cell cycle stages; (c) NAHR, a recombination-based DSB repair mechanism which operates in prophase I of meiosis in germ cells; (d) MMBIR, a microhomology-mediated, replication-based mechanism which operates in the S phase of the cell cycle, and (e) strand slippage during replication (involved in the origin of small insertions and deletions (INDELs). Our analysis permits the inference that, between them, these five mechanisms can explain nearly all naturally occurring deletions of different sizes identified in the human genome, NAHR and MMBIR being potentially more versatile in this regard. With respect to radiation-induced deletions, the basic studies suggest that those arising as a result of the operation of NHEJ/MMEJ processes, as currently formulated, are expected to be relatively small. However, data on induced mutations in mouse spermatogonial stem cells (irradiation in G0/G1 phase of the cell cycle and DSB repair presumed to be via NHEJ predominantly) show that most are associated with deletions of different sizes, some in the megabase range. There is thus a 'discrepancy' between what the basic studies suggest and the empirical observations in mutagenesis studies. This discrepancy, however, is only an apparent but not a real one. It can be resolved by considering the issue of deletions in the broader context of and in conjunction with the organization of chromatin in chromosomes and nuclear architecture, the conceptual framework for which already exists in studies carried out during the past fifteen years or so. In this paper, we specifically hypothesize that repair of DSBs induced in chromatin loops may offer a basis to explain the induction of deletions of different sizes and suggest an approach to test the hypothesis. We emphasize that the bridging of the gap between induced DSB and resulting deletions of different sizes is critical for current efforts in computational modeling of genetic risks.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair/radiation effects , DNA Replication , Genome, Human/radiation effects , Radiation, Ionizing , Sequence Deletion , Animals , Cell Cycle/genetics , Chromatin/ultrastructure , Chromosome Aberrations , Cytogenetics , DNA End-Joining Repair , Germ Cells , Humans , Mice , Models, Molecular , Mutagenesis
8.
Stud Health Technol Inform ; 132: 390-5, 2008.
Article in English | MEDLINE | ID: mdl-18391328

ABSTRACT

Real time ultrasound imaging is one of the many ways to clinically evaluate the anatomical and functional condition of female pelvic floor in patients with urinary incontinence. Reflex arc testing of the displacement of uro-gynecological structures during imaging provides a non-invasive way of visualizing their motility. The response from such tests invariably contains a very large amount of visual information, which is not readily captured and assimilated by the observer because it occurs so fast. For this reason only a portion of available information is retained, typically the beginning end ending frame of the image is preserved. Using video motion tracking, parameters were identified to define important biomechanical and temporal relationships. We conclude that new and clinically significant amount of original information about the female pelvic floor can be obtained through the proposed analysis of visualizations.


Subject(s)
Diagnostic Imaging , Models, Anatomic , Pelvic Floor/diagnostic imaging , Adult , Algorithms , Biomechanical Phenomena , Female , Humans , Middle Aged , Pelvic Floor/physiology , Ultrasonography , Urinary Incontinence , Urodynamics , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...