Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurochem Res ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38918332

ABSTRACT

Neuropsychiatric and neurological disorders pose a significant global health burden, highlighting the need for innovative therapeutic approaches. Fingolimod (FTY720), a common drug to treat multiple sclerosis, has shown promising efficacy against various neuropsychiatric and neurological disorders. Fingolimod exerts its neuroprotective effects by targeting multiple cellular and molecular processes, such as apoptosis, oxidative stress, neuroinflammation, and autophagy. By modulating Sphingosine-1-Phosphate Receptor activity, a key regulator of immune cell trafficking and neuronal function, it also affects synaptic activity and strengthens memory formation. In the hippocampus, fingolimod decreases glutamate levels and increases GABA levels, suggesting a potential role in modulating synaptic transmission and neuronal excitability. Taken together, fingolimod has emerged as a promising neuroprotective agent for neuropsychiatric and neurological disorders. Its broad spectrum of cellular and molecular effects, including the modulation of apoptosis, oxidative stress, neuroinflammation, autophagy, and synaptic plasticity, provides a comprehensive therapeutic approach for these debilitating conditions. Further research is warranted to fully elucidate the mechanisms of action of fingolimod and optimize its use in the treatment of neuropsychiatric and neurological disorders.

2.
Mol Biol Rep ; 51(1): 741, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874869

ABSTRACT

Gastrointestinal cancer is the most fatal cancer worldwide. The etiology of gastrointestinal cancer has yet to be fully characterized. Alcohol consumption, obesity, tobacco, Helicobacter pylori and gastrointestinal disorders, including gastroesophageal reflux disease, gastric ulcer, colon polyps and non-alcoholic fatty liver disease are among the several risks factors for gastrointestinal cancers. Phycocyanin which is abundant in Spirulina. Phycocyanin, a member of phycobiliprotein family with intense blue color, is an anti-diabetic, neuroprotective, anti-oxidative, anti-inflammatory, and anticancer compound. Evidence exists supporting that phycocyanin has antitumor effects, exerting its pharmacological effects by targeting a variety of cellular and molecular processes, i.e., apoptosis, cell-cycle arrest, migration and Wnt/ß-catenin signaling. Phycocyanin has also been applied in treatment of several gastrointestinal disorders such as, gastric ulcer, ulcerative colitis and fatty liver that is known as a risk factor for progression to cancer. Herein, we summarize various cellular and molecular pathways that are affected by phycocyanin, its efficacy upon combined drug treatment, and the potential for nanotechnology in its gastrointestinal cancer therapy.


Subject(s)
Gastrointestinal Neoplasms , Phycocyanin , Humans , Phycocyanin/pharmacology , Phycocyanin/therapeutic use , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Animals , Apoptosis/drug effects , Gastrointestinal Diseases/drug therapy , Gastrointestinal Diseases/metabolism
3.
Neurochem Res ; 49(3): 583-596, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38114727

ABSTRACT

Neurological disorders are a major group of non-communicable diseases affecting quality of life. Non-Coding RNAs (ncRNAs) have an important role in the etiology of neurological disorders. In studies on the genesis of neurological diseases, aquaporin 4 (AQP4) expression and activity have both been linked to ncRNAs. The upregulation or downregulation of several ncRNAs leads to neurological disorder progression by targeting AQP4. The role of ncRNAs and AQP4 in neurological disorders is discussed in this review.


Subject(s)
MicroRNAs , Nervous System Diseases , Humans , Aquaporin 4/genetics , Aquaporin 4/metabolism , Quality of Life , RNA, Untranslated/metabolism , Nervous System Diseases/genetics , Down-Regulation
4.
Behav Brain Res ; 414: 113450, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34265318

ABSTRACT

Investigations have shown that the circadian rhythm can affect the mechanisms associated with drug dependence. In this regard, we sought to assess the negative consequence of morphine withdrawal syndrome on conditioned place aversion (CPA) and lateral paragigantocellularis (LPGi) neuronal activity in morphine-dependent rats during light (8:00-12:00) and dark (20:00-24:00) cycles. Male Wistar rats (250-300 g) were received 10 mg/kg morphine or its vehicle (Saline, 2 mL/kg/12 h, s.c.) in 13 consecutive days for behavioral assessment tests. Then, naloxone-induced conditioned place aversion and physical signs of withdrawal syndrome were evaluated during light and dark cycles. In contrast to the behavioral part, we performed in vivo extracellular single-unit recording for investigating the neural response of LPGi to naloxone in morphine-dependent rats on day 10 of morphine/saline exposure. Results showed that naloxone induced conditioned place aversion in both light and dark cycles, but the CPA score during the light cycle was larger. Moreover, the intensity of physical signs of morphine withdrawal syndrome was more severe during the light cycle (rest phase) compare to the dark one. In electrophysiological experiments, results indicated that naloxone evoked both excitatory and inhibitory responses in LPGi neurons and the incremental effect of naloxone on LPGi activity was stronger in the light cycle. Also, the neurons with the excitatory response exhibited higher baseline activity in the dark cycle, but the neurons with the inhibitory response showed higher baseline activity in the light cycle. Interestingly, the baseline firing rate of neurons recorded in the light cycle was significantly different in response (excitatory/inhibitory) -dependent manner. We concluded that naloxone-induced changes in LPGi cellular activity and behaviors of morphine-dependent rats can be affected by circadian rhythm and the internal clock.


Subject(s)
Behavior, Animal/physiology , Circadian Rhythm/physiology , Conditioning, Classical/physiology , Electrophysiological Phenomena/physiology , Medulla Oblongata/physiopathology , Morphine Dependence/physiopathology , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Substance Withdrawal Syndrome/physiopathology , Animals , Behavior, Animal/drug effects , Conditioning, Classical/drug effects , Disease Models, Animal , Electrophysiological Phenomena/drug effects , Male , Medulla Oblongata/drug effects , Neurons/physiology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...