Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 07 04.
Article in English | MEDLINE | ID: mdl-37401757

ABSTRACT

The theta rhythm, a quasi-periodic 4-10 Hz oscillation, is observed during memory processing in the hippocampus, with different phases of theta hypothesized to separate independent streams of information related to the encoding and recall of memories. At the cellular level, the discovery of hippocampal memory cells (engram neurons), as well as the modulation of memory recall through optogenetic activation of these cells, has provided evidence that certain memories are stored, in part, in a sparse ensemble of neurons in the hippocampus. In previous research, however, engram reactivation has been carried out using open-loop stimulation at fixed frequencies; the relationship between engram neuron reactivation and ongoing network oscillations has not been taken into consideration. To address this concern, we implemented a closed-loop reactivation of engram neurons that enabled phase-specific stimulation relative to theta oscillations in the local field potential in CA1. Using this real-time approach, we tested the impact of activating dentate gyrus engram neurons during the peak (encoding phase) and trough (recall phase) of theta oscillations. Consistent with previously hypothesized functions of theta oscillations in memory function, we show that stimulating dentate gyrus engram neurons at the trough of theta is more effective in eliciting behavioral recall than either fixed-frequency stimulation or stimulation at the peak of theta. Moreover, phase-specific trough stimulation is accompanied by an increase in the coupling between gamma and theta oscillations in CA1 hippocampus. Our results provide a causal link between phase-specific activation of engram cells and the behavioral expression of memory.


Subject(s)
Hippocampus , Neurons , Mice , Animals , Mice, Inbred C57BL , Neurons/physiology , Hippocampus/physiology , Memory/physiology , Theta Rhythm/physiology , Dentate Gyrus/physiology
2.
Commun Biol ; 5(1): 1009, 2022 09 26.
Article in English | MEDLINE | ID: mdl-36163262

ABSTRACT

The hippocampus is involved in processing a variety of mnemonic computations specifically the spatiotemporal components and emotional dimensions of contextual memory. Recent studies have demonstrated cellular heterogeneity along the hippocampal axis. The ventral hippocampus has been shown to be important in the processing of emotion and valence. Here, we combine transgenic and all-virus based activity-dependent tagging strategies to visualize multiple valence-specific engrams in the vHPC and demonstrate two partially segregated cell populations and projections that respond to appetitive and aversive experiences. Next, using RNA sequencing and DNA methylation sequencing approaches, we find that vHPC appetitive and aversive engram cells display different transcriptional programs and DNA methylation landscapes compared to a neutral engram population. Additionally, optogenetic manipulation of tagged cell bodies in vHPC is not sufficient to drive appetitive or aversive behavior in real-time place preference, stimulation of tagged vHPC terminals projecting to the amygdala and nucleus accumbens (NAc), but not the prefrontal cortex (PFC), showed the capacity drive preference and avoidance. These terminals also were able to change their capacity to drive behavior. We conclude that the vHPC contains genetically, cellularly, and behaviorally segregated populations of cells processing appetitive and aversive memory engrams.


Subject(s)
Hippocampus , Memory , Amygdala/physiology , Hippocampus/physiology , Memory/physiology , Optogenetics , Prefrontal Cortex/physiology
3.
J Neurosci Methods ; 351: 109064, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33387574

ABSTRACT

BACKGROUND: Fluorescence imaging is a widely used technique that permits for cell-type-specific recording from hundreds of neurons simultaneously. Often, to obtain cell-type-specific recordings from more than one cell type, researchers add an additional fluorescent protein to mark a second neuronal subpopulation. Currently, however, no consensus exists on the best expression method for multiple fluorescent proteins. NEW METHOD: We optimized the coexpression of two fluorescent proteins across multiple brain regions and mouse lines. RESULTS: The single-virus method, a viral injection in a double transgenic reporter mouse, results in limited fluorescent coexpression. In contrast the double-virus method, injecting a mixture of two viruses in a Cre driver mouse, results in up to 70 % coexpression of the fluorescent markers in vitro. Using the double-virus method allows for population activity recording and neuronal subpopulation determination. COMPARISON WITH EXISTING METHOD: The standard for expressing two fluorescent proteins is to use a double transgenic reporter mouse with a single viral injection. Injecting two viruses into a Cre driver mouse resulted in significantly higher coexpression compared to the standard method. This result generalized to multiple brain regions and mouse lines in vitro, as well as in vivo. CONCLUSION: Efficiently coexpressing multiple fluorescent proteins provides population activity while identifying a neuronal subpopulation of interest. The improved coexpression is applicable to a wide breadth of experiments, ranging from engram investigation to voltage imaging.


Subject(s)
Brain , Neurons , Animals , Brain/diagnostic imaging , Brain/metabolism , Fluorescence , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Luminescent Proteins/genetics , Mice , Mice, Transgenic , Neurons/metabolism , Optical Imaging
4.
J Neurosci ; 40(50): 9576-9588, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33158963

ABSTRACT

Single-cell analysis is revealing increasing diversity in gene expression profiles among brain cells. Traditional promotor-based viral gene expression techniques, however, cannot capture the growing variety among single cells. We demonstrate a novel viral gene expression strategy to target cells with specific miRNA expression using miRNA-guided neuron tags (mAGNET). We designed mAGNET viral vectors containing a CaMKIIα promoter and microRNA-128 (miR-128) binding sites, and labeled CaMKIIα+ cells with naturally low expression of miR-128 (Lm128C cells) in male and female mice. Although CaMKIIα has traditionally been considered as an excitatory neuron marker, our single-cell sequencing results reveal that Lm128C cells are CaMKIIα+ inhibitory neurons of parvalbumin or somatostatin subtypes. Further evaluation of the physiological properties of Lm128C cell in brain slices showed that Lm128C cells exhibit elevated membrane excitability, with biophysical properties closely resembling those of fast-spiking interneurons, consistent with previous transcriptomic findings of miR-128 in regulating gene networks that govern membrane excitability. To further demonstrate the utility of this new viral expression strategy, we expressed GCaMP6f in Lm128C cells in the superficial layers of the motor cortex and performed in vivo calcium imaging in mice during locomotion. We found that Lm128C cells exhibit elevated calcium event rates and greater intrapopulation correlation than the overall CaMKIIα+ cells during movement. In summary, the miRNA-based viral gene targeting strategy described here allows us to label a sparse population of CaMKIIα+ interneurons for functional studies, providing new capabilities to investigate the relationship between gene expression and physiological properties in the brain.SIGNIFICANCE STATEMENT We report the discovery of a class of CaMKIIα+ cortical interneurons, labeled via a novel miRNA-based viral gene targeting strategy, combinatorial to traditional promoter-based strategies. The fact that we found a small, yet distinct, population of cortical inhibitory neurons that express CaMKIIα demonstrates that CaMKIIα is not as specific for excitatory neurons as commonly believed. As single-cell sequencing tools are providing increasing insights into the gene expression diversity of neurons, including miRNA profile data, we expect that the miRNA-based gene targeting strategy presented here can help delineate many neuron populations whose physiological properties can be readily related to the miRNA gene regulatory networks.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Gene Targeting , Interneurons/metabolism , MicroRNAs/genetics , Motor Cortex/metabolism , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Female , Genetic Vectors , Male , Mice , MicroRNAs/metabolism
5.
eNeuro ; 5(2)2018.
Article in English | MEDLINE | ID: mdl-29662946

ABSTRACT

Synaptic activity in vivo can potentially alter the integration properties of neurons. Using recordings in awake mice, we targeted somatosensory layer 2/3 pyramidal neurons and compared neuronal properties with those from slices. Pyramidal cells in vivo had lower resistance and gain values, as well as broader spikes and increased spike frequency adaptation compared to the same cells in slices. Increasing conductance in neurons using dynamic clamp to levels observed in vivo, however, did not lessen the differences between in vivo and slice conditions. Further, local application of tetrodotoxin (TTX) in vivo blocked synaptic-mediated membrane voltage fluctuations but had little impact on pyramidal cell membrane input resistance and time constant values. Differences in electrophysiological properties of layer 2/3 neurons in mouse somatosensory cortex, therefore, stem from intrinsic sources separate from synaptic-mediated membrane voltage fluctuations.


Subject(s)
Electrophysiological Phenomena/physiology , Pyramidal Cells/physiology , Somatosensory Cortex/physiology , Animals , Electrophysiological Phenomena/drug effects , Female , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice , Patch-Clamp Techniques , Sodium Channel Blockers/pharmacology , Somatosensory Cortex/drug effects , Somatosensory Cortex/pathology , Tetrodotoxin/pharmacology
6.
eNeuro ; 4(5)2017.
Article in English | MEDLINE | ID: mdl-29085901

ABSTRACT

Local GABAergic interneurons regulate the activity of spatially-modulated principal cells in the medial entorhinal cortex (MEC), mediating stellate-to-stellate connectivity and possibly enabling grid formation via recurrent inhibitory circuitry. Despite the important role interneurons seem to play in the MEC cortical circuit, the combination of low cell counts and functional diversity has made systematic electrophysiological studies of these neurons difficult. For these reasons, there remains a paucity of knowledge on the electrophysiological profiles of superficial MEC interneuron populations. Taking advantage of glutamic acid decarboxylase 2 (GAD2)-IRES-tdTomato and PV-tdTomato transgenic mice, we targeted GABAergic interneurons for whole-cell patch-clamp recordings and characterized their passive membrane features, basic input/output properties and action potential (AP) shape. These electrophysiologically characterized cells were then anatomically reconstructed, with emphasis on axonal projections and pial depth. K-means clustering of interneuron anatomical and electrophysiological data optimally classified a population of 106 interneurons into four distinct clusters. The first cluster is comprised of layer 2- and 3-projecting, slow-firing interneurons. The second cluster is comprised largely of PV+ fast-firing interneurons that project mainly to layers 2 and 3. The third cluster contains layer 1- and 2-projecting interneurons, and the fourth cluster is made up of layer 1-projecting horizontal interneurons. These results, among others, will provide greater understanding of the electrophysiological characteristics of MEC interneurons, help guide future in vivo studies, and may aid in uncovering the mechanism of grid field formation.


Subject(s)
Entorhinal Cortex/cytology , Entorhinal Cortex/physiology , Interneurons/cytology , Interneurons/physiology , Action Potentials/physiology , Animals , Cluster Analysis , Electric Impedance , Glutamate Decarboxylase/metabolism , Immunohistochemistry , Mice, Transgenic , Parvalbumins/metabolism , Patch-Clamp Techniques , Principal Component Analysis , Signal Processing, Computer-Assisted , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...