Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Oral Health ; 24(1): 501, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725023

ABSTRACT

BACKGROUND: Releasing of metal ions might implicate in allergic reaction as a negative subsequent of the corrosion of Stainless Steel (SS304) orthodontic wires. The aim of this study was to evaluate the corrosion resistance of zinc-coated (Zn-coated) SS orthodontic wires. METHODS: Zinc coating was applied on SS wires by PVD method. Electrochemical impedance spectroscopy (EIS), Potentiodynamic polarization tests and Tafel analysis methods were used to predict the corrosion behavior of Zn-coated and uncoated SS wires in both neutral and acidic environments. RESULTS: The values of Ecorr ,icorr and Rct ,which were the electrochemical corrosion characteristics, reported better corrosion behavior of Zn-coated SS wires against uncoated ones in both artificial saliva and fluoride-containing environments. Experimental results of the Tafel plot analyses were consistent with that of electrochemical impedance spectroscopy analyses for both biological solutions. CONCLUSION: Applying Zn coating on bare SS orthodontic wire by PVD method might increase the corrosion resistance of the underlying stainless-steel substrate.


Subject(s)
Dielectric Spectroscopy , Materials Testing , Orthodontic Wires , Saliva, Artificial , Stainless Steel , Zinc , Corrosion , Stainless Steel/chemistry , Zinc/chemistry , Saliva, Artificial/chemistry , Dental Alloys/chemistry , Coated Materials, Biocompatible/chemistry , Fluorides/chemistry , Hydrogen-Ion Concentration , Humans , Surface Properties , Potentiometry
2.
ACS Omega ; 7(5): 4083-4094, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35155902

ABSTRACT

Dialysis has been recognized as an essential treatment for end-stage renal disease (ESRD). This therapy, however, suffers from several limitations leading to numerous complications in the patients. As dialysis cannot completely substitute healthy kidney functions, the health condition of an ESRD patient is ultimately affected. Wearable artificial kidney (WAK) can resolve the restrictions of blood purification by the dialysis method. However, absorbing large amounts of urea produced in the body is one of the main challenges of these WAK and overcoming this is necessary to improve both functionality and footprint of the device. This study investigates the adsorption capabilities of N- and P-doped graphene nanosorbents for the first time by using molecular dynamic simulation. Urea removal on carbon nanosheets was simulated with different percentages of phosphorus and nitrogen dopants along with the pristine graphene. Specifically, the effects of interaction energy, adsorption percentage, gyration radius, hydrogen bonding, and other molecular dynamic analyses on urea removal were also investigated. The results from this study match well with the existing research, demonstrating the accuracy of the model. The results further suggest that graphene nanosheets doped by 10% nitrogen are likely the most effective in removing urea given that it is associated with the maximum radial distribution function (RDF), the maximum reduction in gyration radius, a high number of hydrogen bonds, and the most negative adsorption energy. This molecular study offers attractive suggestions for the novel adsorbents of artificial kidney devices and paves the way for the development of novel and enhanced urea adsorbents.

3.
Water Sci Technol ; 84(7): 1663-1677, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34662304

ABSTRACT

Flake Zn-Al layered double hydroxides (FLDHs) and microspheres of LDH (MLDHs) were fabricated with a simple hydrothermal method to investigate the role of the morphology of Zn-Al LDH for humic acid (HA) adsorption from synthetic solutions and natural water. The effect of process variables, i.e. contact time, initial concentration of HA, pH, and competitive ions on the adsorption was investigated. HA removal mechanism was also studied. The two adsorbents exhibited different adsorption behaviors for HA in the presence and absence of background ions, which may be highly correlated with the various adsorption mechanisms involved. Comparison of the HA removal capacity of these two adsorbents implies the superior adsorption capability of FLDH for removal of HA from synthetic solutions (9.5 mg/g), while the adsorption capacity of MLDH was higher for natural organic matters present in natural water samples containing co-existing ions (8.9 mg/g). The pseudo-second-order kinetics model and Longmuir isotherm model could adequately interpret the HA adsorption process for the studied adsorbents. Both LDHs exhibited good regeneration and recycling abilities.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Humic Substances , Hydroxides , Water , Water Pollutants, Chemical/analysis , Zinc
4.
Polymers (Basel) ; 12(6)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32585991

ABSTRACT

X-ray radiation is a harmful carcinogenic electromagnetic source that can adversely affect the health of living species and deteriorate the DNA of cells, thus it's vital to protect vulnerable sources from them. To address this flaw, the conductive polymeric structure of polyaniline (PANi) was reinforced with diverse filler loadings (i.e., 25 wt % and 50 wt %) of hybrid graphene oxide-iron tungsten nitride (ITN) flakes toward attenuation of X-ray beams and inhabitation of microorganisms' growth. Primary characterizations confirmed the successful decoration of graphene oxide (GO) with interconnected and highly dense structure of iron tungsten nitride with a density of about 24.21 g.cm⁻3 and reinforcement of PANi with GO-ITN. Additionally, the outcome of evaluations showed the superior performance of developed shields, where a shield with 1.2 mm thickness containing 50 wt % GO-ITN showed 131.73 % increase in the electrical conductivity (compared with neat PANi) along with 78.07%, 57.12%, and 44.99% decrease in the amplitude of the total irradiated X-ray waves at 30, 40, and 60 kVp tube voltages, respectively, compared with control X-ray dosage. More importantly, the developed shields not only showed non-toxic nature and improved the viability of cells, but also completely removed the selected microorganisms at a concentration of 1000 µg.mL-1.

5.
Mikrochim Acta ; 185(1): 57, 2017 12 18.
Article in English | MEDLINE | ID: mdl-29594397

ABSTRACT

The effect of graphene nanosheets on the glucose sensing performance of CuO powders was investigated. CuO and graphene-modified CuO nanoparticles (NPs) were fabricated by microwave-assisted synthesis and characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy. The material was placed on a glassy carbon electrode (GCE) which then was characterized by cyclic voltammetry and chronoamperometry with respect to the capability of sensing glucose both at pH 13 and pH 7.4. The results revealed that the modified GCE has a fast and selective linear response to glucose at pH 13 that covers the 0.21 µM to 12 mM concentration range, with a 0.21 µM low detection limit. The presence of graphene nanosheets results in an improved sensitivity which is to 700 µA mM-1 cm-2. In solution of pH 7.4, the respective data are a linear analytical range from 5 to 14 mM; a 5 µM LOD and a sensitivity of 37.63 µA mM-1 cm-2 at working potential of -0.05 V (vs. Ag/AgCl) and scan rate of 50 mV s-1. Ascorbic acid, dopamine, uric acid, sucrose, maltose and fructose do not interfere. Graphical abstract ᅟ.


Subject(s)
Copper/chemistry , Electrochemistry/instrumentation , Glucose/analysis , Graphite/chemistry , Microwaves , Nanoparticles/chemistry , Chemistry Techniques, Synthetic , Humans , Hydrogen-Ion Concentration , Nanotechnology
SELECTION OF CITATIONS
SEARCH DETAIL
...