Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Data Brief ; 54: 110296, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38962209

ABSTRACT

Antimicrobial resistance remains a significant global and One Health threat, owing to the diminishing effectiveness of antibiotics against rapidly evolving multidrug-resistant bacteria, and the limited innovative research towards the development of new antibiotic therapeutics. In this article, we present the whole-genome sequence data of Proteus mirabilis-MN029 obtained from highly accurate long-read PacBioⓇ HiFi technology. The antibacterial activities of the selected African native plant species were also evaluated using the disk diffusion method. Acquired antibiotic resistance genes and chromosomal mutations corresponding to antibiotics of clinical importance were identified from genomic data. Using ethlyl acetate as solvent, Pterocarpus angolensis leaf extracts showed the most promising antibacterial effects against Proteus mirabilis-MN029. These datasets will be useful for future experimental research aimed at designing new antibacterial drugs from plant extracts that are effective alone or in combination with existing antibiotics to overcome multidrug-resistance mechanisms.

2.
Biomedicines ; 11(10)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37892979

ABSTRACT

Antimicrobial resistance is considered a "One-Health" problem, impacting humans, animals, and the environment. The problem of the rapid development and spread of bacteria resistant to multiple antibiotics is a rising global health threat affecting both rich and poor nations. Low- and middle-income countries are at highest risk, in part due to the lack of innovative research on the surveillance and discovery of novel therapeutic options. Fast and effective drug discovery is crucial towards combatting antimicrobial resistance and reducing the burden of infectious diseases. African medicinal plants have been used for millennia in folk medicine to cure many diseases and ailments. Over 10% of the Southern African vegetation is applied in traditional medicine, with over 15 species being partially or fully commercialized. These include the genera Euclea, Ficus, Aloe, Lippia. And Artemisia, amongst many others. Bioactive compounds from indigenous medicinal plants, alone or in combination with existing antimicrobials, offer promising solutions towards overcoming multi-drug resistance. Secondary metabolites have different mechanisms and modes of action against bacteria, such as the inhibition and disruption of cell wall synthesis; inhibition of DNA replication and ATP synthesis; inhibition of quorum sensing; inhibition of AHL or oligopeptide signal generation, broadcasting, and reception; inhibition of the formation of biofilm; disruption of pathogenicity activities; and generation of reactive oxygen species. The aim of this review is to highlight some promising traditional medicinal plants found in Africa and provide insights into their secondary metabolites as alternative options in antibiotic therapy against multi-drug-resistant bacteria. Additionally, synergism between plant secondary metabolites and antibiotics has been discussed.

3.
Heliyon ; 8(3): e09089, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35309404

ABSTRACT

Water scarcity is one of the main challenges in sustainable agricultural development particularly in developing countries therefore, irrigation of food crops with wastewater effluent has become a common practice in order to meet the growing food demand. The aim of this study was to determine the impact of wastewater irrigation on bacterial community and antibiotic resistance dynamics in soil and vegetables in an agricultural setting. To determine bacterial diversity, occurrence and overall dynamics of antibiotic resistant genes (ARGs) in effluent irrigated soil and vegetables, 16S rRNA gene metagenomics, shotgun metagenomics and molecular PCR technique were utilized. A shift in bacterial community profile was observed as notable reduction in proteobacteria and increase in firmicutes phyla from the microcosm soil following wastewater effluent irrigation. Shotgun metagenomics revealed diverse ARGs belonging to at least nine different classes of antibiotics in the effluent wastewater. However, only bla TEM (beta-lactamase) and aadA (aminoglycoside) resistance gene sequences were identified in microcosm soil following irrigation and only bla TEM was detected on effluent irrigated vegetable surfaces (spinach and beetroots). From the study, only bla TEM gene was identified across all samples; effluent wastewater, effluent-treated soil, and vegetables. The data suggests a possible dissemination and persistence of the beta-lactamase bla TEM gene from effluent wastewater into agricultural soil and vegetables. This study enhances our understanding of antibiotic resistance spread and highlights the importance of monitoring antibiotic resistance in agro-systems, which is critical for informing policies aimed at sustainable use of wastewater effluent in water-stressed countries.

4.
Can J Microbiol ; 67(10): 737-748, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34077692

ABSTRACT

Wastewater treatment plants (WWTPs) are useful environments for investigating the occurrence, diversity, and evolution of plasmids encoding clinically relevant antibiotic resistance genes (ARGs). Our objective was to isolate and sequence plasmids encoding meropenem resistance from bacterial hosts within Canadian WWTPs. We used two enrichment culture approaches for primary plasmid isolation, followed by screening for antibiotic resistance, conjugative mobility, and stability in enteric bacteria. Isolated plasmids were sequenced using Illumina MiSeq and Sanger sequencing methods. Bioinformatics analyses resolved a multi-resistance IncF/MOBF12 plasmid, pFEMG (209 357 bp), harbouring resistance genes to ß-lactam (blaCMY-42, blaTEM-1ß, and blaNDM-5), macrolide (mphA-mrx-mphR), tetracycline (tetR-tetB-tetC-tetD), trimethoprim (dfrA12), aminoglycoside (aadA2), and sulfonamide (sul1) antibiotic classes. We also isolated an IncI1/MOBP12 plasmid pPIMR (172 280 bp) carrying similar ß-lactamase and a small multi-drug efflux resistance gene cluster (blaCMY-42-blc-sugE) to pFEMG. The co-occurrence of different ARGs within a single 24 552 bp cluster in pFEMG - interspersed with transposons, insertion sequence elements, and a class 1 integron - may be of significant interest to human and veterinary medicine. Additionally, the presence of conjugative and plasmid maintenance genes in the studied plasmids corresponded to observed high conjugative transfer frequencies and stable maintenance. Extensive investigation is required to further understand the fitness trade-offs of plasmids with different types of conjugative transfer and maintenance modules.


Subject(s)
Plasmids , Water Purification , beta-Lactamases , Anti-Bacterial Agents/pharmacology , Canada , Genomics , Plasmids/genetics , Plasmids/isolation & purification , beta-Lactamases/genetics
6.
Can J Microbiol ; 62(7): 600-7, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27277701

ABSTRACT

Sewage sludge recovered from wastewater treatment plants contains antibiotic residues and is rich in antibiotic resistance genes, selected for and enriched in the digestive tracts of human using antibiotics. The use of sewage sludge as a crop fertilizer constitutes a potential route of human exposure to antibiotic resistance genes through consumption of contaminated crops. Several gene targets associated with antibiotic resistance (catA1, catB3, ereA, ereB, erm(B), str(A), str(B), qnrD, sul1, and mphA), mobile genetic elements (int1, mobA, IncW repA, IncP1 groups -α, -ß, -δ, -γ, -ε), and bacterial 16S rRNA (rrnS) were quantified by qPCR from soil and vegetable samples obtained from unamended and sludge-amended plots at an experimental field in London, Ontario. The qPCR data reveals an increase in abundance of gene targets in the soil and vegetables samples, indicating that there is potential for additional crop exposure to antibiotic resistance genes carried within sewage sludge following field application. It is therefore advisable to allow an appropriate delay period before harvesting of vegetables for human consumption.


Subject(s)
Crops, Agricultural , Drug Resistance, Microbial/genetics , Fertilizers , Plasmids/genetics , Sewage , Vegetables , Anti-Bacterial Agents/pharmacology , Humans , Ontario , RNA, Ribosomal, 16S , Sewage/microbiology , Soil/chemistry , Soil Microbiology , Vegetables/microbiology , Wastewater
7.
Front Microbiol ; 5: 558, 2014.
Article in English | MEDLINE | ID: mdl-25389419

ABSTRACT

A wastewater treatment plant (WWTP) is an environment high in nutrient concentration with diverse bacterial populations and can provide an ideal environment for the proliferation of mobile elements such as plasmids. WWTPs have also been identified as reservoirs for antibiotic resistance genes that are associated with human pathogens. The objectives of this study were to isolate and characterize self-transmissible or mobilizable resistance plasmids associated with effluent from WWTP. An enrichment culture approach designed to capture plasmids conferring resistance to high concentrations of erythromycin was used to capture plasmids from an urban WWTP servicing a population of ca. 210,000. DNA sequencing of the plasmids revealed diversity of plasmids represented by incompatibility groups IncU, col-E, IncFII and IncP-1ß. Genes coding resistance to clinically relevant antibiotics (macrolide, tetracycline, beta-lactam, trimethoprim, chloramphenicol, sulphonamide), quaternary ammonium compounds and heavy metals were co-located on these plasmids, often within transposable and integrative mobile elements. Several of the plasmids were self-transmissible or mobilizable and could be maintained in the absence of antibiotic selection. The IncFII plasmid pEFC36a showed the highest degree of sequence identity to plasmid R1 which has been isolated in England more than 50 years ago from a patient suffering from a Salmonella infection. Functional conservation of key regulatory features of this F-like conjugation module were demonstrated by the finding that the conjugation frequency of pEFC36a could be stimulated by the positive regulator of plasmid R1 DNA transfer genes, TraJ.

8.
Appl Environ Microbiol ; 80(22): 6898-907, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25172864

ABSTRACT

The consumption of crops fertilized with human waste represents a potential route of exposure to antibiotic-resistant fecal bacteria. The present study evaluated the abundance of bacteria and antibiotic resistance genes by using both culture-dependent and molecular methods. Various vegetables (lettuce, carrots, radish, and tomatoes) were sown into field plots fertilized inorganically or with class B biosolids or untreated municipal sewage sludge and harvested when of marketable quality. Analysis of viable pathogenic bacteria or antibiotic-resistant coliform bacteria by plate counts did not reveal significant treatment effects of fertilization with class B biosolids or untreated sewage sludge on the vegetables. Numerous targeted genes associated with antibiotic resistance and mobile genetic elements were detected by PCR in soil and on vegetables at harvest from plots that received no organic amendment. However, in the season of application, vegetables harvested from plots treated with either material carried gene targets not detected in the absence of amendment. Several gene targets evaluated by using quantitative PCR (qPCR) were considerably more abundant on vegetables harvested from sewage sludge-treated plots than on vegetables from control plots in the season of application, whereas vegetables harvested the following year revealed no treatment effect. Overall, the results of the present study suggest that producing vegetable crops in ground fertilized with human waste without appropriate delay or pretreatment will result in an additional burden of antibiotic resistance genes on harvested crops. Managing human exposure to antibiotic resistance genes carried in human waste must be undertaken through judicious agricultural practice.


Subject(s)
Bacteria/genetics , Bacterial Proteins/genetics , Fertilizers/microbiology , Sewage/microbiology , Soil Microbiology , Vegetables/microbiology , Agriculture , Anaerobiosis , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/isolation & purification , Bacterial Proteins/metabolism , Drug Resistance, Bacterial , Feces/microbiology , Fertilizers/adverse effects , Humans
9.
J Environ Health ; 75(6): 50-8, 2013.
Article in English | MEDLINE | ID: mdl-23397650

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a public health threat within the general community, thereby warranting identification of MRSA reservoirs within the community. Computer terminals in schools were sampled for S. aureus and methicillin-resistant staphylococci. The overall prevalence of MRSA on computer keyboards was low: 0.68% for a postsecondary institution and 2% and 0% for two secondary institutes. The MRSA isolate from the postsecondary institution did not correspond to the Canadian epidemic clusters, but is related to the USA 700 cluster, which contains strains implicated in outbreaks within the U.S. The isolate from the secondary institute's keyboard was typed as CMRSA7 (USA 400), a strain that has been implicated in both Canadian and U.S. epidemics. Methicillin-resistant S. haemolyticus and S. epidermidis were also isolated from keyboards, indicating that a mixed community of methicillin-resistant staphylococci can be present on keyboards. Although the prevalence was low, the presence of MRSA combined with the high volume of traffic on these student computer terminals demonstrates the potential for public-access computer terminals and computer rooms at educational institutes to act as reservoirs.


Subject(s)
Computer Peripherals , Equipment Contamination/statistics & numerical data , Methicillin-Resistant Staphylococcus aureus/classification , Schools , Staphylococcal Infections/transmission , Bacterial Load , Disease Reservoirs , Humans , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Molecular Typing , Prevalence , Saskatchewan , Staphylococcal Infections/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...