Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 18: 1347082, 2024.
Article in English | MEDLINE | ID: mdl-38419961

ABSTRACT

The electroencephalogram (EEG) serves as an essential tool in exploring brain activity and holds particular importance in the field of mental health research. This review paper examines the application of artificial intelligence (AI), encompassing machine learning (ML) and deep learning (DL), for classifying schizophrenia (SCZ) through EEG. It includes a thorough literature review that addresses the difficulties, methodologies, and discoveries in this field. ML approaches utilize conventional models like Support Vector Machines and Decision Trees, which are interpretable and effective with smaller data sets. In contrast, DL techniques, which use neural networks such as convolutional neural networks (CNNs) and long short-term memory networks (LSTMs), are more adaptable to intricate EEG patterns but require significant data and computational power. Both ML and DL face challenges concerning data quality and ethical issues. This paper underscores the importance of integrating various techniques to enhance schizophrenia diagnosis and highlights AI's potential role in this process. It also acknowledges the necessity for collaborative and ethically informed approaches in the automated classification of SCZ using AI.

2.
Biomed Phys Eng Express ; 9(3)2023 03 10.
Article in English | MEDLINE | ID: mdl-36805304

ABSTRACT

Coronavirus disease (COVID-19) is a class of SARS-CoV-2 virus which is initially identified in the later half of the year 2019 and then evolved as a pandemic. If it is not identified in the early stage then the infection and mortality rates increase with time. A timely and reliable approach for COVID-19 identification has become important in order to prevent the disease from spreading rapidly. In recent times, many methods have been suggested for the detection of COVID-19 disease have various flaws, to increase diagnosis performance, fresh investigations are required. In this article, automatically diagnosing COVID-19 using ECG images and deep learning approaches like as Visual Geometry Group (VGG) and AlexNet architectures have been proposed. The proposed method is able to classify between COVID-19, myocardial infarction, normal sinus rhythm, and other abnormal heart beats using Lead-II ECG image only. The efficacy of the technique proposed is validated by using a publicly available ECG image database. We have achieved an accuracy of 77.42% using Alexnet model and 75% accuracy with the help of VGG19 model.


Subject(s)
COVID-19 , Cardiovascular Diseases , Humans , Artificial Intelligence , SARS-CoV-2 , Cardiovascular Diseases/diagnostic imaging , Databases, Factual
3.
Biomed Tech (Berl) ; 66(5): 489-501, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-33939896

ABSTRACT

Myocardial infarction (MI) happens when blood stops circulating to an explicit segment of the heart causing harm to the heart muscles. Vectorcardiography (VCG) is a technique of recording direction and magnitude of the signals that are produced by the heart in a 3-lead representation. In this work, we present a technique for detection of MI in the inferior portion of heart using short duration VCG signals. The raw signal was pre-processed using the median and Savitzky-Golay (SG) filter. The Stationary Wavelet Transform (SWT) was used for time-invariant decomposition of the signal followed by feature extraction. The selected features using minimum-redundancy-maximum-relevance (mRMR) based feature selection method were applied to the supervised classification methods. The efficacy of the proposed method was assessed under both class-oriented and a more real-life subject-oriented approach. An accuracy of 99.14 and 89.37% were achieved respectively. Results of the proposed technique are better than existing state-of-art methods and used VCG segment is shorter. Thus, a shorter segment and a high accuracy can be helpful in the automation of timely and reliable detection of MI. The satisfactory performance achieved in the subject-oriented approach shows reliability and applicability of the proposed technique.


Subject(s)
Inferior Wall Myocardial Infarction , Myocardial Infarction , Electrocardiography , Heart , Humans , Myocardial Infarction/diagnosis , Reproducibility of Results , Vectorcardiography
4.
Comput Biol Med ; 132: 104307, 2021 05.
Article in English | MEDLINE | ID: mdl-33765449

ABSTRACT

Accurate detection of key components in an electrocardiogram (ECG) plays a vital role in identifying cardiovascular diseases. In this work, we proposed a novel and lightweight P, QRS, and T peaks detector using adaptive thresholding and template waveform. In the first stage, we proposed a QRS complex detector, which utilises a novel adaptive thresholding process followed by threshold initialisation. Moreover, false positive QRS complexes were removed using the kurtosis coefficient computation. In the second stage, the ECG segment from the S wave point to the Q wave point was extracted for clustering. The template waveform was generated from the cluster members using the ensemble average method, interpolation, and resampling. Next, a novel conditional thresholding process was used to calculate the threshold values based on the template waveform morphology for P and T peaks detection. Finally, the min-max functions were used to detect the P and T peaks. The proposed technique was applied to the MIT-BIH arrhythmia database (MIT-AD) and the QT database for QRS detection and validation. Sensitivity (Se%) values of 99.81 and 99.90 and positive predictivity (+P%) values of 99.85 and 99.94 were obtained for the MIT-AD and QT database for QRS complex detection, respectively. Further, we found that Se% = 96.50 and +P% = 96.08 for the P peak detection, Se% = 100 and +P% = 100 for the R peak detection, and Se% = 99.54 and +P% = 99.68 for the T peak detection when using the manually annotated QT database. The proposed technique exhibits low computational complexity and can be implemented on low-cost hardware, since it is based on simple decision rules rather than a heuristic approach.


Subject(s)
Algorithms , Electrocardiography , Arrhythmias, Cardiac , Cluster Analysis , Databases, Factual , Humans , Signal Processing, Computer-Assisted
5.
Phys Eng Sci Med ; 43(3): 1049-1067, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32734450

ABSTRACT

Detection of QRS-complex in the electrocardiogram (ECG) plays a decisive role in cardiac disorder detection. We face many challenges in terms of powerline interference, baseline drift, and abnormal varying peaks. In this work, we propose an exploratory data analysis (EDA) based efficient QRS-complex detection technique with minimal computational load. This paper includes median and moving average filter for pre-processing of the ECG. The peak of filtered ECG is enhanced to third power of the signal. The root mean square (rms) of the signal is estimated for the decision making rule. This technique adapted the new concept for isoelectric line identification and EDA based QRS-complex detection. In this paper, total 10,70,981 beats were used for validation from MIT BIH-Arrhythmia Database (MIT-BIH), Fantasia Database (FDB), European ST-T database (ESTD), a self recorded dataset (SDB), and fetal ECG database (FTDB). Overall sensitivity of 99.65 % and positive predictivity rate of 99.84 % have been achieved. The proposed technique doesn't require selection, setting, and training for QRS-complex detection. Thus, this paper presents a QRS-complex detection technique based on simple decision rules.


Subject(s)
Algorithms , Data Analysis , Electrocardiography , Aged , Aged, 80 and over , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/physiopathology , Databases as Topic , Fetus/physiopathology , Heart Rate , Humans , Signal Processing, Computer-Assisted , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...