Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Sci Adv ; 9(33): eadg8190, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37595043

ABSTRACT

Pseudouridine is enriched in ribosomal, spliceosomal, transfer, and messenger RNA and thus integral to the central dogma. The chemical basis for how pseudouridine affects the molecular apparatus such as ribosome, however, remains elusive owing to the lack of structures without this natural modification. Here, we studied the translation of a hypopseudouridylated ribosome initiated by the internal ribosome entry site (IRES) elements. We analyzed eight cryo-electron microscopy structures of the ribosome bound with the Taura syndrome virus IRES in multiple functional states. We found widespread loss of pseudouridine-mediated interactions through water and long-range base pairings. In the presence of the translocase, eukaryotic elongation factor 2, and guanosine 5'-triphosphate hydrolysis, the hypopseudouridylated ribosome favors a rare unconducive conformation for decoding that is partially recouped in the ribosome population that remains modified at the P-site uridine. The structural principles learned establish the link between functional defects and modification loss and are likely applicable to other pseudouridine-associated processes.


Subject(s)
Pseudouridine , RNA, Ribosomal , Cryoelectron Microscopy , Ribosomes , Eukaryota , Guanosine Triphosphate
2.
Nat Catal ; 6(10): 969-977, 2023 Oct.
Article in English | MEDLINE | ID: mdl-38348449

ABSTRACT

Controlling the activity of the CRISPR-Cas9 system is essential to its safe adoption for clinical and research applications. Although the conformational dynamics of Cas9 are known to control its enzymatic activity, details of how Cas9 influences the catalytic processes at both nuclease domains remain elusive. Here we report five cryo-electron microscopy structures of the active Acidothermus cellulolyticus Cas9 complex along the reaction path at 2.2-2.9 Å resolution. We observed that a large movement in one nuclease domain, triggered by the cognate DNA, results in noticeable changes in the active site of the other domain that is required for metal coordination and catalysis. Furthermore, the conformations synchronize the reaction intermediates, enabling coupled cutting of the two DNA strands. Consistent with the roles of conformations in organizing the active sites, adjustments to the metal-coordination residues lead to altered metal specificity of A. cellulolyticus Cas9 and commonly used Streptococcus pyogenes Cas9 in cells.

3.
Elife ; 112022 Oct 03.
Article in English | MEDLINE | ID: mdl-36190192

ABSTRACT

Cas7-11 is a Type III-E CRISPR Cas effector that confers programmable RNA cleavage and has potential applications in RNA interference. Cas7-11 encodes a single polypeptide containing four Cas7- and one Cas11-like segments that obscures the distinction between the multi-subunit Class 1 and the single-subunit Class-2 CRISPR Cas systems. We report a cryo-EM (cryo-electron microscopy) structure of the active Cas7-11 from Desulfonema ishimotonii (DiCas7-11) that reveals the molecular basis for RNA processing and interference activities. DiCas7-11 arranges its Cas7- and Cas11-like domains in an extended form that resembles the backbone made up by four Cas7 and one Cas11 subunits in the multi-subunit enzymes. Unlike the multi-subunit enzymes, however, the backbone of DiCas7-11 contains evolutionarily different Cas7 and Cas11 domains, giving rise to their unique functionality. The first Cas7-like domain nearly engulfs the last 15 direct repeat nucleotides in processing and recognition of the CRISPR RNA, and its free-standing fragment retains most of the activity. Both the second and the third Cas7-like domains mediate target RNA cleavage in a metal-dependent manner. The structure and mutational data indicate that the long variable insertion to the fourth Cas7 domain has little impact on RNA processing or targeting, suggesting the possibility for engineering a compact and programmable RNA interference tool.


Ribonucleic acid or RNA is an important molecule involved in making proteins, transmitting diseases, offering immunity in form of vaccines, and also degrading itself. Programmed RNA degradation is a common method used by bacteria to protect themselves from invading viruses. Bacteria acquire viral genetic materials during infections, which are then converted into RNA fragments, or guide RNA. The guide RNAs both locate and recruit enzymes to help destroy the infectious RNA. These programmable RNA degradation machineries can be repurposed for biotechnology applications to help regulate gene expression or to minimize the effect of viral infections. Similar machineries, like the CRISPR/Cas9 gene editing tool, act like genetic scissors, allowing researchers to make precise modifications to DNA to study and alter the role of genes in the cell. Like in bacteria, the CRISPR system uses fragments of RNA from viruses as a guide to identify matching targets and create breakages in the genetic material. Recently, researchers discovered Cas7-11, which is used to break sections of RNA in viruses. To better understand how Cas7-11 works, Goswami et al. studied its three-dimensional structure. Detailed views of each segment of the protein, together with biochemical studies of the protein's activity, helped to identify their respective roles. The structural information also highlighted three regions involved in snipping RNA and revealed how they drive this process. This analysis showed that a short segment of Cas7-11 alone is sufficient to prepare and bind the guide RNA fragments. These findings add to the understanding of how Cas7-11 prepares its guide and creates breakages in RNA. It has a similar structure to a previously known assembly of proteins that also breaks down RNA, providing insight into its evolution. The detailed analysis of how Cas7-11 works also demonstrates the possibility of engineering it as a laboratory tool to remove specific RNA sequences in cells.


Subject(s)
CRISPR-Associated Proteins , RNA , RNA/genetics , Cryoelectron Microscopy , CRISPR-Cas Systems , RNA Processing, Post-Transcriptional , Repetitive Sequences, Nucleic Acid , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , CRISPR-Associated Proteins/metabolism
4.
Commun Biol ; 5(1): 523, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35650250

ABSTRACT

Eukaryotic ribosome is maturated through an elaborate process that includes modification, processing and folding of pre-ribosomal RNA (pre-rRNAs) by a series of ribosome assembly intermediates. More than 70 factors participate in the dynamic assembly and disassembly of the small subunit processome (90S) inside nucleolus, leading to the early maturation of small subunit. The 5' domain of the 18S rRNA is the last to be incorporated into the stable 90S prior to the cleavage of pre-rRNA at the A1 site. This step is facilitated by the Kre33-Enp2-Bfr2-Lcp5 protein module with the participation of the DEAD-box protein Dbp4. Though structures of Kre33 and Enp2 have been modeled in previously observed 90S structures, that of Bfr2-Lcp5 complex remains unavailable. Here, we report an AlphaFold-assisted structure determination of the Bfr2-Lcp5 complex captured in a 3.99 Å - 7.24 Å cryoEM structure of 90S isolated from yeast cells depleted of Pih1, a chaperone protein of the 90S core assembly. The structure model is consistent with the protein-protein interaction results and the secondary structures of recombinant Bfr2 and Bfr2-Lcp5 complex obtained by Circular Dichroism. The Bfr2-Lcp5 complex interaction mimics that of exosome factors Rrp6-Rrp47 and acts to regulate 90S transitions.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Artificial Intelligence , Cryoelectron Microscopy , Nuclear Proteins/metabolism , RNA, Ribosomal, 18S/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
5.
Structure ; 30(7): 983-992.e5, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35489333

ABSTRACT

Pseudouridine, the most abundant form of RNA modification, is known to play important roles in ribosome function. Mutations in human DKC1, the pseudouridine synthase responsible for catalyzing the ribosome RNA modification, cause translation deficiencies and are associated with a complex cancer predisposition. The structural basis for how pseudouridine impacts ribosome function remains uncharacterized. Here, we characterized structures and conformations of a fully modified and a pseudouridine-free ribosome from Saccharomyces cerevisiae in the absence of ligands or when bound with translocation inhibitor cycloheximide by electron cryomicroscopy. In the modified ribosome, the rearranged N1 atom of pseudouridine is observed to stabilize key functional motifs by establishing predominately water-mediated close contacts with the phosphate backbone. The pseudouridine-free ribosome, however, is devoid of such interactions and displays conformations reflective of abnormal inter-subunit movements. The erroneous motions of the pseudouridine-free ribosome may explain its observed deficiencies in translation.


Subject(s)
Pseudouridine , Ribosomes , Cell Cycle Proteins/metabolism , Cryoelectron Microscopy , Nuclear Proteins/metabolism , Pseudouridine/chemistry , RNA/metabolism , Ribosomes/ultrastructure , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
6.
Commun Biol ; 5(1): 279, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35351985

ABSTRACT

The small RNA-mediated immunity in bacteria depends on foreign RNA-activated and self RNA-inhibited enzymatic activities. The multi-subunit Type III-A CRISPR-Cas effector complex (Csm) exemplifies this principle and is in addition regulated by cellular metabolites such as divalent metals and ATP. Recognition of the foreign or cognate target RNA (CTR) triggers its single-stranded deoxyribonuclease (DNase) and cyclic oligoadenylate (cOA) synthesis activities. The same activities remain dormant in the presence of the self or non-cognate target RNA (NTR) that differs from CTR only in its 3'-protospacer flanking sequence (3'-PFS). Here we employ electron cryomicroscopy (cryoEM), functional assays, and comparative cross-linking to study in vivo assembled mesophilic Lactococcus lactis Csm (LlCsm) at the three functional states: apo, the CTR- and the NTR-bound. Unlike previously studied Csm complexes, we observed binding of 3'-PFS to Csm in absence of bound ATP and analyzed the structures of the four RNA cleavage sites. Interestingly, comparative crosslinking results indicate a tightening of the Csm3-Csm4 interface as a result of CTR but not NTR binding, reflecting a possible role of protein dynamics change during activation.


Subject(s)
CRISPR-Associated Proteins , Lactococcus lactis , Adenosine Triphosphate , Bacterial Proteins/metabolism , CRISPR-Associated Proteins/genetics , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Lactococcus lactis/genetics , Lactococcus lactis/metabolism , RNA
7.
RNA ; 27(2): 221-233, 2021 02.
Article in English | MEDLINE | ID: mdl-33219089

ABSTRACT

During their maturation, nascent 40S subunits enter a translation-like quality control cycle, where they are joined by mature 60S subunits to form 80S-like ribosomes. While these assembly intermediates are essential for maturation and quality control, how they form, and how their structure promotes quality control, remains unknown. To address these questions, we determined the structure of an 80S-like ribosome assembly intermediate to an overall resolution of 3.4 Å. The structure, validated by biochemical data, resolves a large body of previously paradoxical data and illustrates how assembly and translation factors cooperate to promote the formation of an interface that lacks many mature subunit contacts but is stabilized by the universally conserved methyltransferase Dim1. We also show how Tsr1 enables this interface by blocking the canonical binding of eIF5B to 40S subunits, while maintaining its binding to 60S. The structure also shows how this interface leads to unfolding of the platform, which allows for temporal regulation of the ATPase Fap7, thus linking 40S maturation to quality control during ribosome assembly.


Subject(s)
Adenylate Kinase/genetics , Gene Expression Regulation, Fungal , Methyltransferases/genetics , Nuclear Proteins/genetics , Nucleoside-Triphosphatase/genetics , Ribosomal Proteins/genetics , Ribosome Subunits, Large, Eukaryotic/genetics , Ribosome Subunits, Small, Eukaryotic/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Adenylate Kinase/chemistry , Adenylate Kinase/metabolism , Binding Sites , Methyltransferases/chemistry , Methyltransferases/metabolism , Models, Molecular , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Nucleoside-Triphosphatase/chemistry , Nucleoside-Triphosphatase/metabolism , Organelle Biogenesis , Protein Binding , Protein Biosynthesis , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosome Subunits, Large, Eukaryotic/ultrastructure , Ribosome Subunits, Small, Eukaryotic/metabolism , Ribosome Subunits, Small, Eukaryotic/ultrastructure , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism
8.
Sci Rep ; 9(1): 20228, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882871

ABSTRACT

The AAA + ATPase R2TP complex facilitates assembly of a number of ribonucleoprotein particles (RNPs). Although the architecture of R2TP is known, its molecular basis for acting upon multiple RNPs remains unknown. In yeast, the core subunit of the box C/D small nucleolar RNPs, Nop58p, is the target for R2TP function. In the recently observed U3 box C/D snoRNP as part of the 90 S small subunit processome, the unfolded regions of Nop58p are observed to form extensive interactions, suggesting a possible role of R2TP in stabilizing the unfolded region of Nop58p prior to its assembly. Here, we analyze the interaction between R2TP and a Maltose Binding Protein (MBP)-fused Nop58p by biophysical and yeast genetics methods. We present evidence that R2TP interacts largely with the unfolded termini of Nop58p. Our results suggest a general mechanism for R2TP to impart specificity by recognizing unfolded regions in its clients.


Subject(s)
Multiprotein Complexes/metabolism , Nuclear Proteins/metabolism , Ribonucleoproteins, Small Nucleolar/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Cryoelectron Microscopy , Multiprotein Complexes/genetics , Multiprotein Complexes/ultrastructure , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Protein Binding , Protein Unfolding , Ribonucleoproteins, Small Nucleolar/chemistry , Ribonucleoproteins, Small Nucleolar/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/ultrastructure
9.
Cell Mol Life Sci ; 75(16): 3009-3026, 2018 08.
Article in English | MEDLINE | ID: mdl-29445841

ABSTRACT

The pyruvate dehydrogenase complex (PDC) bridges glycolysis and the citric acid cycle. In human, PDC deficiency leads to severe neurodevelopmental delay and progressive neurodegeneration. The majority of cases are caused by variants in the gene encoding the PDC subunit E1α. The molecular effects of the variants, however, remain poorly understood. Using yeast as a eukaryotic model system, we have studied the substitutions A189V, M230V, and R322C in yeast E1α (corresponding to the pathogenic variants A169V, M210V, and R302C in human E1α) and evaluated how substitutions of single amino acid residues within different functional E1α regions affect PDC structure and activity. The E1α A189V substitution located in the heterodimer interface showed a more compact conformation with significant underrepresentation of E1 in PDC and impaired overall PDC activity. The E1α M230V substitution located in the tetramer and heterodimer interface showed a relatively more open conformation and was particularly affected by low thiamin pyrophosphate concentrations. The E1α R322C substitution located in the phosphorylation loop of E1α resulted in PDC lacking E3 subunits and abolished overall functional activity. Furthermore, we show for the E1α variant A189V that variant E1α accumulates in the Hsp60 chaperonin, but can be released upon ATP supplementation. Our studies suggest that pathogenic E1α variants may be associated with structural changes of PDC and impaired folding of E1α.


Subject(s)
Amino Acid Substitution , Pyruvate Dehydrogenase (Lipoamide)/genetics , Pyruvate Dehydrogenase Complex Deficiency Disease/genetics , Pyruvate Dehydrogenase Complex/genetics , Saccharomyces cerevisiae Proteins/genetics , Amino Acid Sequence , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Microscopy, Confocal , Protein Folding , Pyruvate Dehydrogenase (Lipoamide)/chemistry , Pyruvate Dehydrogenase (Lipoamide)/metabolism , Pyruvate Dehydrogenase Complex/chemistry , Pyruvate Dehydrogenase Complex/metabolism , Pyruvate Dehydrogenase Complex Deficiency Disease/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid
10.
Mol Biotechnol ; 56(11): 992-1003, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24969434

ABSTRACT

Peptide sequences fused to a gene of interest facilitate the isolation of proteins or protein complexes from cell extracts. In the case of fluorescent protein tags, the tagged protein can be visually localized in living cells. To tag endogenous genes, PCR-based homologous recombination is a powerful approach used in the yeast Saccharomyces cerevisiae. This approach uses short, homologous DNA sequences that flank the tagging cassette to direct recombination. Here, we constructed a set of plasmids, whose sequences were optimized for codon usage in yeast, for Strep-tag II and Twin-Strep tagging in S. cerevisiae. Some plasmids also contain sequences encoding for a fluorescent protein followed by the purification tag. We demonstrate using the yeast pyruvate dehydrogenase (PDH) complex that these plasmids can be used to purify large protein complexes efficiently. We furthermore demonstrate that purification from the endogenous pool using the Strep-tag system results in functionally active complexes. Finally, using the fluorescent tags, we show that a kinase and a phosphatase involved in regulating the activity of the PDH complex localize in the cells' mitochondria. In conclusion, our cassettes can be used as tools for biochemical, functional, and structural analyses of endogenous multi-protein assemblies in yeast.


Subject(s)
Oligopeptides/genetics , Recombinant Fusion Proteins/chemistry , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae/genetics , Streptavidin/metabolism , Genetic Vectors/genetics , Homologous Recombination , Microscopy, Electron , Oligopeptides/chemistry , Plasmids/genetics , Pyruvate Dehydrogenase Complex/genetics , Pyruvate Dehydrogenase Complex/metabolism , Saccharomyces cerevisiae/metabolism
11.
J Cancer Res Ther ; 7(1): 72-4, 2011.
Article in English | MEDLINE | ID: mdl-21546747

ABSTRACT

A middle-aged lady presented with headache, vomiting of sudden-onset with intermittent evening rise of temperature. She also had slurring of speech with no loss of consciousness or altered sensorium. The patient was under evaluation for hypercalcemia. A whole body bone scan was done to look for causes of hypercalcemia and the scan showed extraosseous 99m Tc MDP (Technetium Methylene Di Phosphonate) uptake. One of the causes of extraosseous MDP uptake is cutaneous T-cell lymphoma (CTCL). On close interrogation the patient gave a history of hypopigmented dermal patches for more than 2 years duration. The coexisting dermal patches raised suspicion of CTCL. Skin biopsy confirmed CTCL. The patient was referred to oncology and was planned for six cycles of chemotherapy.


Subject(s)
Bone and Bones/diagnostic imaging , Hypercalcemia/diagnostic imaging , Hypercalcemia/etiology , Lymphoma, T-Cell, Cutaneous/complications , Lymphoma, T-Cell, Cutaneous/diagnostic imaging , Technetium Tc 99m Medronate/pharmacokinetics , Adult , Diagnosis, Differential , Female , Humans , Prognosis , Radionuclide Imaging , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution
12.
Indian J Med Paediatr Oncol ; 31(4): 148-50, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21584222

ABSTRACT

An asymptomatic issueless young staff nurse underwent pre-employment health screening and USG abdomen showed multiple hypodense lesions in liver. Further screening with whole body positron emission tomography-computed tomography (PET-CT) scan showed significantly FDG avid mass involving most of the right lobe of liver with multiple large FDG avid lymph nodal metastases. Unsuspected focal abnormal, FDG avid, hyperdense mural nodule was seen in uterus, which is the site of primary.

SELECTION OF CITATIONS
SEARCH DETAIL
...