Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Res Microbiol ; 174(5): 104073, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37100335

ABSTRACT

Candida glabrata, an opportunistic fungal pathogen, causes superficial and life-threatening infections in humans. In the host microenvironment, C. glabrata encounters a variety of stresses, and its ability to cope with these stresses is crucial for its pathogenesis. To gain insights into how C. glabrata adapts to adverse environmental conditions, we examined its transcriptional landscape under heat, osmotic, cell wall, oxidative, and genotoxic stresses using RNA sequencing and reveal that C. glabrata displays a diverse transcriptional response involving ∼75% of its genome for adaptation to different environmental stresses. C. glabrata mounts a central common adaptation response wherein ∼25% of all genes (n = 1370) are regulated in a similar fashion at different environmental stresses. Elevated cellular translation and diminished mitochondrial activity-associated transcriptional signature characterize the common adaptation response. Transcriptional regulatory association networks of common adaptation response genes revealed a set of 29 transcription factors acting as potential activators and repressors of associated adaptive response genes. Overall, the current work delineates the adaptive responses of C. glabrata to diverse environmental stresses and reports the existence of a common adaptive transcriptional response upon prolonged exposure to environmental stresses.


Subject(s)
Candida glabrata , Stress, Physiological , Humans , Candida glabrata/genetics , Transcription Factors/genetics , Adaptation, Physiological/genetics , Gene Expression Profiling , Fungal Proteins/genetics
2.
Microb Pathog ; 173(Pt A): 105864, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36343882

ABSTRACT

Candida albicans is the leading human fungal pathogen that can cause mucosal and systemic fungal infections. Host phagocytes are the primary immune defense against invading fungal pathogens including C. albicans. To better understand the host-pathogen interaction between C. albicans and host phagocytes, we utilized a human macrophage model of THP-1 macrophages and examined the mutual transcriptomic response of C. albicans and host macrophages by dual RNA-sequencing. Both C. albicans and macrophages displayed marked changes in their transcriptional profiles post 2 h coincubation. We show that C. albicans responds to human macrophages differently than its known response to murine macrophages. C. albicans displays upregulation of its translational machinery and downregulation of glyoxylate and tricarboxylic acid (TCA) cycle upon macrophage phagocytosis. C. albicans triggered strong induction of genes associated with cell surface-mediated signaling and proinflammatory response in THP-1 macrophages. Finally, our data reveal that IL-1ß and TNF signaling are central in mounting a proinflammatory response against C. albicans via MAP kinase, and chemokines and cytokines mediated signaling. Overall, current work uncovers the mutual responses of C. albicans and human macrophages towards each other presenting a better understanding of their interaction during C. albicans infections.


Subject(s)
Candida albicans , Macrophages , Humans , Mice , Animals , Candida albicans/genetics , Macrophages/microbiology , Phagocytosis , Host-Pathogen Interactions , RNA
4.
Fungal Biol ; 124(5): 427-439, 2020 05.
Article in English | MEDLINE | ID: mdl-32389305

ABSTRACT

The ability to survive host-elicited oxidative stress is critical for microbial pathogens to cause infection. The human fungal pathogen C.glabrata can tolerate high levels of oxidative stress and proliferate inside phagocytes. Previous studies had successfully identified a transcription response to oxidative stress including induction of a core set of detoxification genes. However, the findings only represent an early snapshot of a highly dynamic process lacking temporal resolution. Here, we compare the transcriptome of C. glabrata at various points after exposure to hydrogen peroxide in order to study its adaptation to an oxidative environment. Our results reveal global and temporal gene expression changes during an immediate response; up-regulating genes related to peroxide detoxification, while down-regulating genes essential for growth. As cells adapt to the oxidative environment, a dramatic transcriptome reprogramming occurred to restore key cellular functions, protein homeostasis and biosynthesis of trehalose, carbohydrate, fatty acid and ergosterol. Interestingly, biofilm and drug transporter genes as well as many genes implicated in virulence, were induced during the adaptation stage. Our finding, therefore, suggests a role of oxidative stress adaptation in promoting virulence and drug resistance traits of C. glabrata during infection.


Subject(s)
Adaptation, Physiological , Candida glabrata , Transcriptome , Adaptation, Physiological/genetics , Candida glabrata/drug effects , Candida glabrata/genetics , Fungal Proteins/genetics , Gene Expression Profiling , Hydrogen Peroxide/pharmacology , Oxidants/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/genetics , Transcriptome/drug effects
5.
Cell Microbiol ; 17(2): 269-87, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25223215

ABSTRACT

The yeast class III phosphoinositide 3-kinase (PI3K) that catalyses production of the lipid signalling molecule, phosphatidylinositol-3-phosphate, is primarily implicated in vesicle-mediated transport and autophagy. In this study, we identified, through a genetic screen, the Candida glabrata CgVPS15 gene, an orthologue of the Saccharomyces cerevisiae PI3K regulatory subunit-encoding open reading frame (ORF) to be required for impairment of phagosomal maturation in human macrophages. We also disrupted catalytic subunit of the C. glabrata PI3K complex, CgVps34, and found it to be pivotal to arrest mature phagolysosome biogenesis. Further, deletion of either CgVPS15 or CgVPS34 rendered C. glabrata cells hyperadherent to epithelial cells and susceptible to the antimicrobial arsenal of primary murine and cultured human macrophages and diverse stresses. Despite no growth retardation at 37°C, Cgvps15Δ and Cgvps34Δ mutants were severely virulence attenuated in mice. We demonstrate that trafficking and/or processing of the vacuolar lumenal hydrolase, carboxypeptidase Y, and the major adhesin, Epa1, rely on PI3K regulatory mechanisms in C. glabrata. By disrupting autophagy-related PI3K complex genes, we show that C. glabrata PI3K-impeded phagolysosomal acidification is primarily owing to its role in cellular trafficking events. Altogether, our findings underscore the essentiality of PI3K signalling in modulation of host immune response, intracellular survival and virulence in C. glabrata.


Subject(s)
Candida glabrata/enzymology , Candida glabrata/physiology , Class III Phosphatidylinositol 3-Kinases/metabolism , Host-Pathogen Interactions , Phagosomes/metabolism , Phagosomes/microbiology , Vacuolar Sorting Protein VPS15/metabolism , Animals , Candida glabrata/growth & development , Candida glabrata/immunology , Cells, Cultured , Class III Phosphatidylinositol 3-Kinases/genetics , Gene Deletion , Humans , Mice , Microbial Viability , Temperature , Vacuolar Sorting Protein VPS15/genetics
6.
J Vis Exp ; (82): e50625, 2013 Dec 10.
Article in English | MEDLINE | ID: mdl-24378622

ABSTRACT

A cell culture model system, if a close mimic of host environmental conditions, can serve as an inexpensive, reproducible and easily manipulatable alternative to animal model systems for the study of a specific step of microbial pathogen infection. A human monocytic cell line THP-1 which, upon phorbol ester treatment, is differentiated into macrophages, has previously been used to study virulence strategies of many intracellular pathogens including Mycobacterium tuberculosis. Here, we discuss a protocol to enact an in vitro cell culture model system using THP-1 macrophages to delineate the interaction of an opportunistic human yeast pathogen Candida glabrata with host phagocytic cells. This model system is simple, fast, amenable to high-throughput mutant screens, and requires no sophisticated equipment. A typical THP-1 macrophage infection experiment takes approximately 24 hr with an additional 24-48 hr to allow recovered intracellular yeast to grow on rich medium for colony forming unit-based viability analysis. Like other in vitro model systems, a possible limitation of this approach is difficulty in extrapolating the results obtained to a highly complex immune cell circuitry existing in the human host. However, despite this, the current protocol is very useful to elucidate the strategies that a fungal pathogen may employ to evade/counteract antimicrobial response and survive, adapt, and proliferate in the nutrient-poor environment of host immune cells.


Subject(s)
Candida glabrata/physiology , Cell Culture Techniques/methods , Macrophages/cytology , Macrophages/microbiology , Mycology/methods , Candida glabrata/immunology , Candida glabrata/pathogenicity , Cell Line, Tumor , Host-Pathogen Interactions , Humans , Infant , Leukemia, Monocytic, Acute , Macrophages/immunology , Male , Virulence
7.
PLoS Pathog ; 8(8): e1002863, 2012.
Article in English | MEDLINE | ID: mdl-22916016

ABSTRACT

Fungal septicemia is an increasingly common complication of immunocompromised patients worldwide. Candida species are the leading cause of invasive mycoses with Candida glabrata being the second most frequently isolated Candida species from Intensive Care Unit patients. Despite its clinical importance, very little is known about the mechanisms that C. glabrata employs to survive the antimicrobial and immune response of the mammalian host. Here, to decipher the interaction of C. glabrata with the host immune cells, we have screened a library of 18,350 C. glabrata Tn7 insertion mutants for reduced survival in human THP-1 macrophages via signature-tagged mutagenesis approach. A total of 56 genes, belonging to diverse biological processes including chromatin organization and golgi vesicle transport, were identified which are required for survival and/or replication of C. glabrata in macrophages. We report for the first time that C. glabrata wild-type cells respond to the intracellular milieu of macrophage by modifying their chromatin structure and chromatin resistance to micrococcal nuclease digestion, altered epigenetic signature, decreased protein acetylation and increased cellular lysine deacetylase activity are the hall-marks of macrophage-internalized C. glabrata cells. Consistent with this, mutants defective in chromatin organization (Cgrsc3-aΔ, Cgrsc3-bΔ, Cgrsc3-aΔbΔ, Cgrtt109Δ) and DNA damage repair (Cgrtt107Δ, Cgsgs1Δ) showed attenuated virulence in the murine model of disseminated candidiasis. Further, genome-wide transcriptional profiling analysis on THP-1 macrophage-internalized yeasts revealed deregulation of energy metabolism in Cgrsc3-aΔ and Cgrtt109Δ mutants. Collectively, our findings establish chromatin remodeling as a central regulator of survival strategies which facilitates a reprogramming of cellular energy metabolism in macrophage-internalized C. glabrata cells and provide protection against DNA damage.


Subject(s)
Candida glabrata/pathogenicity , Candidiasis/metabolism , Chromatin Assembly and Disassembly , Epigenesis, Genetic , Gene Expression Regulation, Fungal , Genes, Fungal , Macrophages/microbiology , Animals , Candida glabrata/genetics , Candida glabrata/immunology , Candida glabrata/metabolism , Candidiasis/genetics , Candidiasis/immunology , Cell Line , Genome-Wide Association Study , Humans , INDEL Mutation , Macrophages/metabolism , Mice
8.
Microbiology (Reading) ; 157(Pt 2): 484-495, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20966090

ABSTRACT

Redox pathways play a key role in pathogenesis. Glutathione, a central molecule in redox homeostasis in yeasts, is an essential metabolite, but its requirements can be met either from endogenous biosynthesis or from the extracellular milieu. In this report we have examined the importance of glutathione biosynthesis in two major human opportunistic fungal pathogens, Candida albicans and Candida glabrata. As the genome sequence of C. glabrata had suggested the absence of glutathione transporters, we initially investigated exogenous glutathione utilization in C. glabrata by disruption of the MET15 gene, involved in methionine biosynthesis. We observed an organic sulphur auxotrophy in a C. glabrata met15Δ strain; however, unlike its Saccharomyces cerevisiae counterpart, the C. glabrata met15Δ strain was unable to grow on exogenous glutathione. This inability to grow on exogenous glutathione was demonstrated to be due to the lack of a functional glutathione transporter, despite the presence of a functional glutathione degradation machinery (the Dug pathway). In the absence of the ability to obtain glutathione from the extracellular medium, we examined and could demonstrate that γ-glutamyl cysteine synthase, the first enzyme of glutathione biosynthesis, was essential in C. glabrata. Further, although γ-glutamyl cysteine synthase has been reported to be non-essential in C. albicans, we report here for what is believed to be the first time that the enzyme is required for survival in human macrophages in vitro, as well as for virulence in a murine model of disseminated candidiasis. The essentiality of γ-glutamyl cysteine synthase in C. glabrata, and its essentiality for virulence in C. albicans, make the enzyme a strong candidate for antifungal development.


Subject(s)
Candida albicans/metabolism , Candida glabrata/metabolism , Fungal Proteins/metabolism , Glutamate-Cysteine Ligase/metabolism , Glutathione/biosynthesis , Animals , Candida albicans/genetics , Candida albicans/pathogenicity , Candida glabrata/genetics , Candida glabrata/pathogenicity , Cell Line , Cloning, Molecular , Fungal Proteins/genetics , Genes, Essential , Glutamate-Cysteine Ligase/genetics , Humans , Male , Mice , Mice, Inbred BALB C , Mutation , Oxidation-Reduction , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...