Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(25): 37196-37214, 2024 May.
Article in English | MEDLINE | ID: mdl-38764085

ABSTRACT

The transport and deposition of atmospheric pollutants in the Himalayas have a adverse impact on the climate, cryosphere, ecosystem, and monsoon patterns. Unfortunately, there is a insufficiency of data on trace element concentrations and behaviors in the high-altitude Himalayan region, leading to limited research in this area. This study presents a comprehensive and detailed comprehension of trace element deposition, its spatial distribution, seasonal variations, and anthropogenic signals in the high-altitude Kashmir region of the Western Himalayas. Our investigation involved the analysis of 10 trace elements (Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) in glacier ice, snow pits, surface snow, and rainwater collected at various sites including Kolahoi, Thajwas, Pahalgam (Greater Himalayan ranges), and Kongdori and Shopian (Pir Panjal Ranges) during 2021. The study reveals distinct ranges of concentrations for the trace elements at different sampling sites. Our analysis of trace element concentration depth profiles in snow pits reveals seasonal fluctuations during the deposition year. The highest concentrations were found in the autumn (below 20 cm) and summer (top layer), compared to the winter concentration (10-20 cm). The high enrichment factors (EFs) suggest the severity of human-induced trace metal deposition in the western Himalayan region, relative to surrounding regions. Surprisingly, the concentrations and EFs of trace elements showed seasonal contradictions, with lower concentration values and higher EFs during the non-monsoon season and vice versa. A source apportionment analysis using the positive matrix factorization (PMF) technique identified five sources of trace element deposition in the region, including crustal sources (32.33%), coal combustion (15.62%), biomass burning (17.63%), traffic emission (18.8%), and industrial sources (15.6%). Additionally, the study incorporated backward trajectories coupled with δ18O using the NOAA HYSPLIT model to estimate moisture sources in the region, which suggests atmospheric pollutants predominately deposited from the large-scale atmospheric circulation from westerlies (75%) during non-monsoon season. These findings underscore the urgent need for enhanced monitoring and research efforts in the future.


Subject(s)
Air Pollutants , Environmental Monitoring , Seasons , Trace Elements , Trace Elements/analysis , Air Pollutants/analysis , Snow/chemistry , India , Humans , Himalayas
2.
Sci Rep ; 14(1): 5270, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438411

ABSTRACT

In the present study, the effect of mild to high-temperature regimes on the quasi-static and dynamic tensile behaviours of Barakar sandstone from the Jharia coal mine fire region has been experimentally investigated. The experimental work has been performed on Brazilian disk specimens of Barakar sandstone, which are thermally treated up to 800 °C. The quasi-static and dynamic split tensile strength tests were carried out on a servo-controlled universal testing machine and Split Hopkinson Pressure Bar (SHPB), respectively. Microscopic and mineralogical changes were studied through a petrographic investigation. The experimental results suggest the prevalence of both, static and dynamic loading scenarios after 400 °C. Up to 400 °C, the quasi-static and dynamic tensile strengths increased due to the evaporation of water, which suggests a strengthening effect. However, beyond 400 °C, both strengths decreased significantly as newly formed thermal microcracks became prevalent. The dynamic tensile strength exhibits strain rate sensitivity up to 400 °C, although it shows a marginal decline in this sensitivity beyond this temperature threshold. The Dynamic Increase Factor (DIF) remained constant up to 400 °C and slightly increased after 400 °C. Furthermore, the characteristic strain rate at which the dynamic strength becomes twice the quasi-static strength remains consistent until reaching 400 °C but steadily decreases beyond this temperature. This experimental study represents the first attempt to validate the Kimberley model specifically for thermally treated rocks. Interestingly, the presence of water did not have a significant impact on the failure modes up to 400 °C, as the samples exhibited a dominant tensile failure mode, breaking into two halves with fewer fragments. However, as temperature increased, the failure behaviours became more complex due to the combined influence of thermally induced microcracks and the applied impact load. Cracks initially formed at the centre and subsequently, multiple shear cracks emerged and propagated in the loading direction, resulting in a high degree of fragmentation. This study also demonstrates that shear failure is not solely dependent on the loading rate but can also be influenced by temperature, further affecting the failure mode of the sandstone.

3.
Environ Geochem Health ; 45(11): 7933-7956, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37505348

ABSTRACT

High concentrations of arsenic (As) in groundwater are among the long-standing environmental problems on the planet. Due to adverse impacts on the human and aquatic system, characterization and quantification of individual inorganic As species are crucial in understanding the occurrence, environmental fate, behaviour, and toxicity in natural waters. This study presents As concentration and its speciation As(III) and As(V) data, including the interrelationship with other major and trace aqueous solutes from parts of the Ghaghara basin, India. More than half (57%) of the groundwater samples exhibited elevated As concentrations (> 10 µg/L), whereas 67.4% of samples have higher As(III) values relative to As(V), signifying a potential risk of As(III) toxicity. The elevated concentration of As was associated with higher Fe, Mn, and HCO3-, especially in samples from shallow well depth. PHREEQC modeling demonstrates the presence of mineral phases such as hematite, goethite, rhodochrosite, etc. Therefore, it is inferred that the release of As from sediment particles into pore water via microbially mediated Fe/Mn oxyhydroxides, and As(V) reduction processes mainly control high As concentrations. The heavy metal pollution indices (HPI) and (HEI) values revealed heavy metal pollution in low-lying areas deposited by relatively younger sediments along the Ghaghara River. Large-scale agricultural practices, overexploitation of groundwater, and indiscriminate sewage disposal, in addition to geogenic factors, cannot be ruled out as potential contributors to As mobilization in the region. This study recommends conducting seasonal hydrogeochemical monitoring and investigating regional natural background levels of As, to precisely understand the controlling mechanistic pathways of As release.


Subject(s)
Arsenic , Groundwater , Metals, Heavy , Water Pollutants, Chemical , Humans , Arsenic/analysis , Geologic Sediments/chemistry , Groundwater/chemistry , Rivers , India , Water Pollutants, Chemical/analysis , Environmental Monitoring
4.
Ground Water ; 60(4): 488-495, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35141887

ABSTRACT

Intermontane basin aquifers worldwide, particularly in the Himalayan region, are recharged largely by the adjoining mountains. Recharge in these basins can occur either by water infiltrating from streams near mountain fronts (MFs) as mountain front recharge (MFR) or by sub-surface mountain block infiltration as mountain block recharge (MBR). MFR and MBR recharge are challenging to distinguish and are least quantified, considering the lack of extensive understanding of the hydrological processes in the mountains. This study used oxygen and hydrogen isotopes (δ18 O and δ2 H), electrical conductivity (EC) data, hydraulic head, and groundwater level data to differentiate MFR and MBR. Groundwater level data provide information about the groundwater-surface water interactions and groundwater flow directions, whereas isotopes and EC data are used to distinguish and quantify different recharge sources. The present methodology is tested in an intermontane basin of the Himalayan region. The results suggest that karst springs (KS) and deep groundwater (DGW) recharge are dominated by snowmelt (47% ± 10% and 46% ± 9%) as MBR from adjacent mountains, insignificantly affected by evaporation. The hydraulic head data and isotopes indicate Quaternary shallow groundwater (SGW) aquifer system recharge as MFR of local meteoric water with significant evaporation. The results indicate several flow paths in the aquifer system, a local flow for KS, intermediate flow for SGW, and regional flow for DGW. The findings will significantly impact water resource management in the area and provide vital baseline knowledge for sustainable groundwater management in other Himalayan intermontane basins.

5.
Environ Monit Assess ; 194(3): 140, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35113272

ABSTRACT

The critical significance of keeping the current information about the extent and dynamics of the cryosphere in the Himalayas cannot be understated. The climate of the Himalayas is vulnerable and interlinked with global-scale climate changes, and the hydrology of the region mainly depends on the cryosphere. This is the first study that has created glacier and glacier lake inventory that links the impact of cryosphere on streamflow to land system dynamic changes under the changing climate of the Upper Jhelum River Basin (UJRB) of the Kashmir Himalayan region. This study uses a series of satellite data (1980-2016) to assess the depletion of snow cover area (SCA), deglaciation, and dynamics of glacial lakes. Moreover, observational long-term hydrometeorological data were used to understand the variability in temperature, precipitation, and track changes of land system dynamics under depletion of streamflow. The results suggested an overall rise in temperature (TMax = 0.05 ºC a-1; TMin = 0.02 ºC a-1; Tavg = 0.06 ºC a-1) and a decrease in precipitation (2.9 mm a-1) between 1980 and 2016 with a significant increase in annual average temperature and decrease in annual precipitation at stations located at higher altitudes. The SCA showed a significantly decreasing (p < 0.01) trend in the glacierized sub-basins with an annual rate of decrease of -0.78% a-1, -0.15% a-1, -0.03% a-1 -0.90% a-1 for Lidder, Sindh, Vishow, and Rambiara sub-basins, respectively. The findings of this study reveal the high occurrence of glacier disintegration and deglaciation. During the period 2010-2016, a rapid rate of deglaciation was observed (18.34 ± 0.14 km2), followed by 1992-2000 (15.61 ± 0.13 km2). The average rate of retreat was observed to be 6.81 ± 1.5 m a-1 with a total retreat of 267 ± 80 m during 1980-2016, which is higher than reported from surrounding mountain ranges in the Himalayas. The mapped 244 glacial and high-altitude lake inventory covers a total surface area of around 15 km2, with 5.87 km2 (40%) covered by 25 bedrock-dammed lakes. The glacial expansion and creation of new lakes are observed to be because of increasing glacier and snow melting between 1980 and 2016, which increases the risk of GLOF events in the future. The annual average discharge in UJRB significantly increased from 1991 to 1998 and was observed to be higher than the annual average of the respected gauge stations but shows significant depletion from 1998 onwards. The streamflow depletion under climate change is one of the reasons for land system dynamics in UJRB. The area under agriculture has decreased up to 63% with a massive expansion of built-up (399%), aquatic vegetation (523%), and plantation (765%) between 1992 and 2015.


Subject(s)
Climate Change , Rivers , Environmental Monitoring , Hydrology , Ice Cover
6.
Sci Rep ; 7(1): 14552, 2017 11 06.
Article in English | MEDLINE | ID: mdl-29109545

ABSTRACT

The Moon bears a striking compositional and isotopic resemblance to the bulk silicate Earth (BSE) for many elements, but is considered highly depleted in many volatile elements compared to BSE due to high-temperature volatile loss from Moon-forming materials in the Moon-forming giant impact and/or due to evaporative loss during subsequent magmatism on the Moon. Here, we use high-pressure metal-silicate partitioning experiments to show that the observed low concentrations of volatile elements sulfur (S), selenium (Se), tellurium (Te), and antimony (Sb) in the silicate Moon can instead reflect core-mantle equilibration in a largely to fully molten Moon. When incorporating the core as a reservoir for these elements, their bulk Moon concentrations are similar to those in the present-day bulk silicate Earth. This suggests that Moon formation was not accompanied by major loss of S, Se, Te, Sb from Moon-forming materials, consistent with recent indications from lunar carbon and S isotopic compositions of primitive lunar materials. This is in marked contrast with the losses of other volatile elements (e.g., K, Zn) during the Moon-forming event. This discrepancy may be related to distinctly different cosmochemical behavior of S, Se, Te and Sb within the proto-lunar disk, which is as of yet virtually unconstrained.

7.
Nature ; 503(7474): 104-7, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24201283

ABSTRACT

Silicate liquids play a key part at all stages of deep Earth evolution, ranging from core and crust formation billions of years ago to present-day volcanic activity. Quantitative models of these processes require knowledge of the structural changes and compression mechanisms that take place in liquid silicates at the high pressures and temperatures in the Earth's interior. However, obtaining such knowledge has long been impeded by the challenging nature of the experiments. In recent years, structural and density information for silica glass was obtained at record pressures of up to 100 GPa (ref. 1), a major step towards obtaining data on the molten state. Here we report the structure of molten basalt up to 60 GPa by means of in situ X-ray diffraction. The coordination of silicon increases from four under ambient conditions to six at 35 GPa, similar to what has been reported in silica glass. The compressibility of the melt after the completion of the coordination change is lower than at lower pressure, implying that only a high-order equation of state can accurately describe the density evolution of silicate melts over the pressure range of the whole mantle. The transition pressure coincides with a marked change in the pressure-evolution of nickel partitioning between molten iron and molten silicates, indicating that melt compressibility controls siderophile-element partitioning.

SELECTION OF CITATIONS
SEARCH DETAIL
...