Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 6(6): 3410-7, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24531922

ABSTRACT

We investigate charge transport in a chemically reduced graphene oxide (RGO) film of sub-micron thickness. The I-V curve of RGO film shows current switching of the order of ∼10(5) above the threshold voltage. We found that the observed I-V curve is consistent with quantum tunnelling based charge transport. The quantum tunnelling based Simmons generalized theory was used to interpret the charge transport mechanism which shows that the current switching phenomenon is associated with transition from direct to Fowler-Nordheim (F-N) tunneling. The absence of current switching in the I-V curve after stripping away the oxygen functional groups from chemically RGO film confirms that the presence of these groups and reduced interaction between adjacent layers of RGO play a key role in charge transport. Such metal-based current switching devices may find applications in graphene-based electronic devices such as high voltage resistive switching devices.

2.
Opt Lett ; 37(22): 4711-3, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23164888

ABSTRACT

In this work, we demonstrate propagating surface plasmon polariton (SPP) coupled photoluminescence (PL) excitation of single-walled carbon nanotube (SWNT). SPPs were launched at a few micrometers from individually marked SWNT, and plasmon-coupled PL was recorded to determine the efficiency of this remote in-plane addressing scheme. The efficiency depends upon the following factors: (i) longitudinal and transverse distances between the SPP launching site and the location of the SWNT and (ii) orientation of the SWNT with respect to the plasmon propagation wave vector (k(SPP)). Our experiment explores the possible integration of carbon nanotubes as a plasmon sensor in plasmonic and nanophotonic devices.

3.
Opt Express ; 20(10): 10498-508, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22565675

ABSTRACT

Amplifying local electromagnetic fields by engineering optical interactions between individual constituents of an optical antenna is considered fundamental for efficient nonlinear wavelength conversion in nanometer-scale devices. In contrast to this general statement we show that high field enhancement does not necessarily lead to an optimized nonlinear activity. In particular, we demonstrate that second-harmonic responses generated at strongly interacting optical gap antennas can be significantly suppressed. Numerical simulations are confirming silencing of second-harmonic in these coupled systems despite the existence of local field amplification. We then propose a simple approach to restore and amplify the second-harmonic signal by changing the manner in which electrically-connected optical antennas are interacting in the charge-transfer plasmon regime. Our observations provide critical design rules for realizing optimal structures that are essential for a broad variety of nonlinear surface-enhanced characterizations and for realizing the next generation of electrically-driven optical antennas.


Subject(s)
Nanotechnology/methods , Optics and Photonics/methods , Computer Simulation , Electromagnetic Fields , Electromagnetic Radiation , Electrons , Equipment Design , Gold/chemistry , Materials Testing , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning/methods , Models, Theoretical , Scattering, Radiation , Surface Properties
4.
ACS Nano ; 3(9): 2617-22, 2009 Sep 22.
Article in English | MEDLINE | ID: mdl-19719150

ABSTRACT

Nanostructures based on multiwalled carbon nanotubes (MWNTs) are fabricated using plasma of the mixture of hydrogen and nitrogen gases. The plasma-sharpened tips of nanotubes contain only a few tubes at the apex of the structure and lead to the dramatic enhancement in the emission current density by a factor >10(6) with the onset field as low as 0.16 V/microm. We propose that the nature of the tunneling barrier changes significantly for a nanosize tip at very high local electric field and may lead to the saturation in the emission current density.

5.
J Nanosci Nanotechnol ; 7(6): 1820-3, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17654947

ABSTRACT

The nitrogen doped multiwalled carbon nanotubes (MWNTs) were synthesized by microwave plasma chemical vapor deposition (MPCVD) technique. In this paper, we report the results of FTIR, Raman, and TGA studies to confirm the presence of N-doping inside carbon nanotubes. Fourier transform infrared (FTIR) studies were carried out in the range 400-4000 cm(-1) to study the attachment of nitrogen impurities on carbon nanotubes. FTIR spectra of the virgin sample of MWNTs show dominant peaks which are corresponding to Si-O, C-N, N-CH3, CNT, C-O, and C-Hx, respectively. The Si-O peak has its origin in silicon substrate whereas the other peaks are due to the precursor gases present in the gas mixture. The peaks are sharp and highly intense showing the chemisorption nature of the dipole bond. The intensity of the peaks due to N-CH3, C-N, and C-H reduces after annealing. It is interesting to note that these peaks vanish on annealing at high temperature (900 degrees C). The presence of C-N peak may imply the doping of the MWNTs with N in substitution mode. The position of this intense peak is in agreement with the reported peak in carbon nitride samples prepared by plasma CVD process, since the Raman modes are also expected to be delocalized over both carbon and nitrogen sites it was found that the intensity ratio of the D and G peaks, I(D)/I(G), varies as a function of ammonia concentration. The TGA measurements, carried out under argon flow, show that the dominant weight loss of the sample occurs in the temperature range 400-600 degrees C corresponding to the removal of the impurities and amorphous carbon.


Subject(s)
Crystallization/methods , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Nitrogen/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...