Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Oncogene ; 43(12): 851-865, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38297083

ABSTRACT

Triple-negative (ER-PR-HER2-) breast cancers (TNBC) are highly aggressive and difficult to treat. TNBC exhibit high genomic instability, which enables them to adapt and become resistant to chemo/radiation therapy, leading to rapid disease relapse and mortality. The pro-survival factors that safeguard genome integrity in TNBC cells are poorly understood. LBH is an essential mammary stem cell-specific transcription regulator in the WNT pathway that is aberrantly overexpressed in TNBC, correlating with poor prognosis. Herein, we demonstrate a novel role for LBH in promoting TNBC cell survival. Depletion of LBH in multiple TNBC cell models triggered apoptotic cell death both in vitro and in vivo and led to S-G2M cell cycle delays. Mechanistically, LBH loss causes replication stress due to DNA replication fork stalling, leading to ssDNA breaks, ɣH2AX and 53BP1 nuclear foci formation, and activation of the ATR/CHK1 DNA damage response. Notably, ATR inhibition in combination with LBH downmodulation had a synergistic effect, boosting TNBC cell killing and blocking in vivo tumor growth. Our findings demonstrate, for the first time, that LBH protects the genome integrity of cancer cells by preventing replicative stress. Importantly, they uncover new synthetic lethal vulnerabilities in TNBC that could be exploited for future multi-modal precision medicine.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Neoplasm Recurrence, Local , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle , Protein Kinase Inhibitors/pharmacology , Transcription Factors/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism
2.
bioRxiv ; 2023 May 03.
Article in English | MEDLINE | ID: mdl-37205442

ABSTRACT

Castration-resistant prostate cancer (CRPC) is fatal and therapeutically under-served. We describe a novel CRPC-restraining role for the vasodilatory soluble guanylyl cyclase (sGC) pathway. We discovered that sGC subunits are dysregulated during CRPC progression and its catalytic product, cyclic GMP (cGMP), is lowered in CRPC patients. Abrogating sGC heterodimer formation in castration-sensitive prostate cancer (CSPC) cells inhibited androgen deprivation (AD)-induced senescence, and promoted castration-resistant tumor growth. We found sGC is oxidatively inactivated in CRPC. Paradoxically, AD restored sGC activity in CRPC cells through redox-protective responses evoked to protect against AD-induced oxidative stress. sGC stimulation via its FDA-approved agonist, riociguat, inhibited castration-resistant growth, and the anti-tumor response correlated with elevated cGMP, indicating on-target sGC activity. Consistent with known sGC function, riociguat improved tumor oxygenation, decreasing the PC stem cell marker, CD44, and enhancing radiation-induced tumor suppression. Our studies thus provide the first evidence for therapeutically targeting sGC via riociguat to treat CRPC. Statement of significance: Prostate cancer is the second highest cancer-related cause of death for American men. Once patients progress to castration-resistant prostate cancer, the incurable and fatal stage, there are few viable treatment options available. Here we identify and characterize a new and clinically actionable target, the soluble guanylyl cyclase complex, in castration-resistant prostate cancer. Notably we find that repurposing the FDA-approved and safely tolerated sGC agonist, riociguat, decreases castration-resistant tumor growth and re-sensitizes these tumors to radiation therapy. Thus our study provides both new biology regarding the origins of castration resistance as well as a new and viable treatment option.

3.
Elife ; 102021 12 17.
Article in English | MEDLINE | ID: mdl-34919052

ABSTRACT

Gliomas are highly malignant brain tumors with poor prognosis and short survival. NAD+ has been shown to impact multiple processes that are dysregulated in cancer; however, anti-cancer therapies targeting NAD+ synthesis have had limited success due to insufficient mechanistic understanding. Here, we adapted a Drosophila glial neoplasia model and discovered the genetic requirement for NAD+ synthase nicotinamide mononucleotide adenylyltransferase (NMNAT) in glioma progression in vivo and in human glioma cells. Overexpressing enzymatically active NMNAT significantly promotes glial neoplasia growth and reduces animal viability. Mechanistic analysis suggests that NMNAT interferes with DNA damage-p53-caspase-3 apoptosis signaling pathway by enhancing NAD+-dependent posttranslational modifications (PTMs) poly(ADP-ribosyl)ation (PARylation) and deacetylation of p53. Since PARylation and deacetylation reduce p53 pro-apoptotic activity, modulating p53 PTMs could be a key mechanism by which NMNAT promotes glioma growth. Our findings reveal a novel tumorigenic mechanism involving protein complex formation of p53 with NAD+ synthetic enzyme NMNAT and NAD+-dependent PTM enzymes that regulates glioma growth.


One of the most common types of brain cancer, glioma, emerges when harmful mutations take place in the 'glial' cells tasked with supporting neurons. When these genetically damaged cells are not fixed or eliminated, they can go on to multiply uncontrollability. A protein known as p53 can help to repress emerging tumors by stopping mutated cells in their tracks. Glioma is a highly deadly cancer, and treatments are often ineffective. Some of these approaches have focused on a protein involved in the creation of the coenzyme NAD+, which is essential to the life processes of all cells. However, these drugs have had poor outcomes. Instead, Liu et al. focused on NMNAT, the enzyme that participates in the final stage of the creation of NAD+. NMNAT is known to protect neurons, but it is unclear how it involved in cancer. Experiments in fruit flies which were then validated in human glioma cells showed that increased NMNAT activity allowed glial cells with harmful mutations to survive and multiply. Detailed molecular analysis showed that NMNAT orchestrates chemical modifications that inactivate p53. It does so by working with other molecular actors to direct NAD+ to add and remove chemical groups that control the activity of p53. Taken together, these results show how NMNAT can participate in the emergence of brain cancers. They also highlight the need for further research on whether drugs that inhibit this enzyme could help to suppress tumors before they become deadly.


Subject(s)
Cell Proliferation , Drosophila Proteins/genetics , Glioma/metabolism , Nicotinamide-Nucleotide Adenylyltransferase/genetics , Protein Processing, Post-Translational , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis , Disease Models, Animal , Drosophila Proteins/metabolism , Glioma/genetics , Nicotinamide-Nucleotide Adenylyltransferase/metabolism
4.
Redox Biol ; 40: 101848, 2021 04.
Article in English | MEDLINE | ID: mdl-33450725

ABSTRACT

Cancer cells develop protective adaptations against oxidative DNA damage, providing a strong rationale for targeting DNA repair proteins. There has been a high degree of recent interest in inhibiting the mammalian Nudix pyrophosphatase MutT Homolog 1 (MTH1). MTH1 degrades 8-oxo-dGTP, thus limiting its incorporation into genomic DNA. MTH1 inhibition has variously been shown to induce genomic 8-oxo-dG elevation, genotoxic strand breaks in p53-functional cells, and tumor-inhibitory outcomes. Genomically incorporated 8-oxo-dG is excised by the base excision repair enzyme, 8-oxo-dG glycosylase 1 (OGG1). Thus, OGG1 inhibitors have been developed with the idea that their combination with MTH1 inhibitors will have anti-tumor effects by increasing genomic oxidative DNA damage. However, contradictory to this idea, we found that human lung adenocarcinoma with low OGG1 and MTH1 were robustly represented in patient datasets. Furthermore, OGG1 co-depletion mitigated the extent of DNA strand breaks and cellular senescence in MTH1-depleted p53-wildtype lung adenocarcinoma cells. Similarly, shMTH1-transduced cells were less sensitive to the OGG1 inhibitor, SU0268, than shGFP-transduced counterparts. Although the dual OGG1/MTH1 inhibitor, SU0383, induced greater cytotoxicity than equivalent combined or single doses of its parent scaffold MTH1 and OGG1 inhibitors, IACS-4759 and SU0268, this effect was only observed at the highest concentration assessed. Collectively, using both genetic depletion as well as small molecule inhibitors, our findings suggest that OGG1/MTH1 co-inhibition is unlikely to yield significant tumor-suppressive benefit. Instead such co-inhibition may exert tumor-protective effects by preventing base excision repair-induced DNA nicks and p53 induction, thus potentially conferring a survival advantage to the treated tumors.


Subject(s)
DNA Glycosylases , Neoplasms , Animals , DNA Damage , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , DNA Repair , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Humans , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism
5.
Mol Cancer Ther ; 19(2): 432-446, 2020 02.
Article in English | MEDLINE | ID: mdl-31744893

ABSTRACT

Investigations into the human 8-oxodGTPase, MutT Homolog 1 (MTH1), have risen sharply since the first-in-class MTH1 inhibitors were reported to be highly tumoricidal. However, MTH1 as a cancer therapeutic target is currently controversial because subsequently developed inhibitors did not exhibit similar cytotoxic effects. Here, we provide the first direct evidence for MTH1-independent 8-oxodGTPase function in human cancer cells and human tumors, using a novel ATP-releasing guanine-oxidized (ARGO) chemical probe. Our studies show that this functionally redundant 8-oxodGTPase activity is not decreased by five different published MTH1-targeting small molecules or by MTH1 depletion. Significantly, while only the two first-in-class inhibitors, TH588 and TH287, reduced cancer cell viability, all five inhibitors evaluated in our studies decreased 8-oxodGTPase activity to a similar extent. Thus, the reported efficacy of the first-in-class MTH1 inhibitors does not arise from their inhibition of MTH1-specific 8-oxodGTPase activity. Comparison of DNA strand breaks, genomic 8-oxoguanine incorporation, or alterations in cellular oxidative state by TH287 versus the noncytotoxic inhibitor, IACS-4759, contradict that the cytotoxicity of the former results solely from increased levels of oxidatively damaged genomic DNA. Thus, our findings indicate that mechanisms unrelated to oxidative stress or DNA damage likely underlie the reported efficacy of the first-in-class inhibitors. Our study suggests that MTH1 functional redundancy, existing to different extents in all cancer lines and human tumors evaluated in our study, is a thus far undefined factor which is likely to be critical in understanding the importance of MTH1 and its clinical targeting in cancer.


Subject(s)
Antimutagenic Agents/metabolism , DNA Repair Enzymes/metabolism , Neoplasms/genetics , Phosphoric Monoester Hydrolases/metabolism , Cell Line, Tumor , Humans , Retrospective Studies
6.
DNA Repair (Amst) ; 83: 102644, 2019 11.
Article in English | MEDLINE | ID: mdl-31311767

ABSTRACT

Cellular homeostasis is dependent on a balance between DNA damage and DNA repair mechanisms. Cells are constantly assaulted by both exogenous and endogenous stimuli leading to high levels of reactive oxygen species (ROS) that cause oxidation of the nucleotide dGTP to 8-oxodGTP. If this base is incorporated into DNA and goes unrepaired, it can result in G > T transversions, leading to genomic DNA damage. MutT Homolog 1 (MTH1) is a nucleoside diphosphate X (Nudix) pyrophosphatase that can remove 8-oxodGTP from the nucleotide pool before it is incorporated into DNA by hydrolyzing it into 8-oxodGMP. MTH1 expression has been shown to be elevated in many cancer cells and is thought to be a survival mechanism by which a cancer cell can stave off the effects of high ROS that can result in cell senescence or death. It has recently become a target of interest in cancer because it is thought that inhibiting MTH1 can increase genotoxic damage and cytotoxicity. Determining the role of MTH1 in normal and cancer cells is confounded by an inability to reliably and directly measure its native enzymatic activity. We have used the chimeric ATP-releasing guanine-oxidized (ARGO) probe that combines 8-oxodGTP and ATP to measure MTH1 enzymatic activity in colorectal cancer (CRC), non-small cell lung cancer (NSCLC) and pancreatic ductal adenocarcinoma (PDAC) along with patient-matched normal tissue. MTH1 8-oxodGTPase activity is significantly increased in tumors across all three tissue types, indicating that MTH1 is a marker of cancer. MTH1 activity measured by ARGO assay was compared to mRNA and protein expression measured by RT-qPCR and Western blot in the CRC tissue pairs, revealing a positive correlation between ARGO assay and Western blot, but little correlation with RT-qPCR in these samples. The adoption of the ARGO assay will help in establishing the level of MTH1 activity in model systems and in assessing the effects of MTH1 modulation in the treatment of cancer.


Subject(s)
DNA Repair Enzymes/metabolism , Neoplasms/enzymology , Phosphoric Monoester Hydrolases/metabolism , Cell Line, Tumor , Colonic Neoplasms/enzymology , Colonic Neoplasms/pathology , DNA Repair Enzymes/deficiency , DNA Repair Enzymes/genetics , Gene Knockout Techniques , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Neoplasms/pathology , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/pathology , Phosphoric Monoester Hydrolases/deficiency , Phosphoric Monoester Hydrolases/genetics
7.
Pharmacol Ther ; 200: 27-41, 2019 08.
Article in English | MEDLINE | ID: mdl-30974124

ABSTRACT

Nicotinamide adenine dinucleotide (NAD+) is an essential biomolecule involved in many critical processes. Its role as both a driver of energy production and a signaling molecule underscores its importance in health and disease. NAD+ signaling impacts multiple processes that are dysregulated in cancer, including DNA repair, cell proliferation, differentiation, redox regulation, and oxidative stress. Distribution of NAD+ is highly compartmentalized, with each subcellular NAD+ pool differentially regulated and preferentially involved in distinct NAD+-dependent signaling or metabolic events. Emerging evidence suggests that targeting NAD+ metabolism is likely to repress many specific mechanisms underlying tumor development and progression, including proliferation, survival, metabolic adaptations, invasive capabilities, heterotypic interactions with the tumor microenvironment, and stress response including notably DNA maintenance and repair. Here we provide a comprehensive overview of how compartmentalized NAD+ metabolism in mitochondria, nucleus, cytosol, and extracellular space impacts cancer formation and progression, along with a discussion of the therapeutic potential of NAD+-targeting drugs in cancer.


Subject(s)
NAD/metabolism , Neoplasms/metabolism , Animals , Cell Nucleus/metabolism , Cytosol/metabolism , Extracellular Space/metabolism , Humans , Mitochondria/metabolism , Neoplasms/drug therapy
8.
DNA Repair (Amst) ; 77: 18-26, 2019 05.
Article in English | MEDLINE | ID: mdl-30852368

ABSTRACT

Unlike normal tissues, tumor cells possess a propensity for genomic instability, resulting from elevated oxidant levels produced by oncogenic signaling and aberrant cellular metabolism. Thus, targeting mechanisms that protect cancer cells from the tumor-inhibitory consequences of their redox imbalance and spontaneous DNA-damaging events is expected to have broad-spectrum efficacy and a high therapeutic index. One critical mechanism for tumor cell protection from oxidant stress is the hydrolysis of oxidized nucleotides. Human MutT homolog 1 (MTH1), the mammalian nudix (nucleoside diphosphate X) pyrophosphatase (NUDT1), protects tumor cells from oxidative stress-induced genomic DNA damage by cleansing the nucleotide pool of oxidized purine nucleotides. Depletion or pharmacologic inhibition of MTH1 results in genomic DNA strand breaks in many cancer cells. However, the mechanisms underlying how oxidized nucleotides, thought mainly to be mutagenic rather than genotoxic, induce DNA strand breaks are largely unknown. Given the recent therapeutic interest in targeting MTH1, a better understanding of such mechanisms is crucial to its successful translation into the clinic and in identifying the molecular contexts under which its inhibition is likely to be beneficial. Here we provide a comprehensive perspective on MTH1 function and its importance in protecting genome integrity, in the context of tumor-associated oxidative stress and the mechanisms that likely lead to irreparable DNA strand breaks as a result of MTH1 inhibition.


Subject(s)
DNA Breaks/drug effects , Enzyme Inhibitors/pharmacology , Nucleotides/metabolism , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Animals , Humans , Oxidation-Reduction/drug effects
9.
Cancer Res ; 78(21): 6235-6246, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30154150

ABSTRACT

Major contributors to therapeutic resistance in pancreatic ductal adenocarcinoma (PDAC) include Kras mutations, a dense desmoplastic stroma that prevents drug delivery to the tumor, and activation of redundant signaling pathways. We have previously identified a mechanistic rationale for targeting STAT3 signaling to overcome therapeutic resistance in PDAC. In this study, we investigate the molecular mechanisms underlying the heterogeneous response to STAT3 and RAS pathway inhibition in PDAC. Effects of JAK/STAT3 inhibition (STAT3i) or MEK inhibition (MEKi) were established in Ptf1acre/+; LSL-KrasG12D/+ ; and Tgfbr2flox/flox (PKT) mice and patient-derived xenografts (PDX). Amphiregulin (AREG) levels were determined in serum from human patients with PDAC, LSL-KrasG12D/+;Trp53R172H/+;Pdx1Cre/+ (KPC), and PKT mice. MEKi/STAT3i-treated tumors were analyzed for integrity of the pancreas and the presence of cancer stem cells (CSC). We observed an inverse correlation between ERK and STAT3 phosphorylation. MEKi resulted in an immediate activation of STAT3, whereas STAT3i resulted in TACE-induced, AREG-dependent activation of EGFR and ERK. Combined MEKi/STAT3i sustained blockade of ERK, EGFR, and STAT3 signaling, overcoming resistance to individual MEKi or STAT3i. This combined inhibition attenuated tumor growth in PDX and increased survival of PKT mice while reducing serum AREG levels. Furthermore, MEKi/STAT3i altered the PDAC tumor microenvironment by depleting tumor fibrosis, maintaining pancreatic integrity, and downregulating CD44+ and CD133+ CSCs. These results demonstrate that resistance to MEKi is mediated through activation of STAT3, whereas TACE-AREG-EGFR-dependent activation of RAS pathway signaling confers resistance to STAT3 inhibition. Combined MEKi/STAT3i overcomes these resistances and provides a novel therapeutic strategy to target the RAS and STAT3 pathway in PDAC.Significance: This report describes an inverse correlation between MEK and STAT3 signaling as key mechanisms of resistance in PDAC and shows that combined inhibition of MEK and STAT3 overcomes this resistance and provides an improved therapeutic strategy to target the RAS pathway in PDAC.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/21/6235/F1.large.jpg Cancer Res; 78(21); 6235-46. ©2018 AACR.


Subject(s)
MAP Kinase Kinase 1/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , STAT3 Transcription Factor/metabolism , ras Proteins/metabolism , Amphiregulin/metabolism , Animals , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , Humans , Ligands , Mice , Mice, Nude , Mutation , Neoplasm Transplantation , Phosphorylation , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction , Tissue Array Analysis , Tumor Microenvironment
10.
Oncogene ; 37(46): 6011-6024, 2018 11.
Article in English | MEDLINE | ID: mdl-29991802

ABSTRACT

The development of Barrett's esophagus (BE) and its progression to esophageal adenocarcinoma (EAC) is highly linked to exposure to acidic bile salts due to chronic gastroesophageal reflux disease (GERD). In this study, we investigated the role of Apurinic/apyrimidinic endonuclease 1/redox effector factor-1 (APE1/REF-1) in STAT3 activation in response to acidic bile salts. Our results indicate that APE1 is constitutively overexpressed in EAC, whereas its expression is transiently induced in response to acidic bile salts in non-neoplastic BE. Using overexpression or shRNA knockdown of APE1, we found that APE1 is required for phosphorylation, nuclear localization, and transcriptional activation of STAT3. By using an APE1 redox-specific mutant (C65A) and APE1 redox inhibitor (E3330), we demonstrate that APE1 activates STAT3 in a redox-dependent manner. By using pharmacologic inhibitors and genetic knockdown systems, we found that EGFR is a required link between APE1 and STAT3. EGFR phosphorylation (Y1068) was directly associated with APE1 levels and redox function. Co-immunoprecipitation and proximity ligation assays indicated that APE1 coexists and interacts with the EGFR-STAT3 protein complex. Consistent with these findings, we demonstrated a significant induction in mRNA expression levels of STAT3 target genes (IL-6, IL-17A, BCL-xL, Survivin, and c-MYC) in BE and EAC cells, following acidic bile salts treatment. ChIP assays indicated that acidic bile salts treatment enhances binding of STAT3 to the promoter of its target genes, Survivin and BCL-xL. Inhibition of APE1/REF-1 redox activity using E3330 abrogated STAT3 DNA binding and transcriptional activity. The induction of APE1-STAT3 axis in acidic bile salts conditions provided a survival advantage and promoted cellular proliferation. In summary, our study provides multiple pieces of evidence supporting a critical role for APE1 induction in activating the EGFR-STAT3 signaling axis in response to acidic bile salts, the main risk factor for Barrett's carcinogenesis.


Subject(s)
Adenocarcinoma/genetics , Barrett Esophagus/genetics , Bile Acids and Salts/pharmacology , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Esophageal Neoplasms/genetics , STAT3 Transcription Factor/genetics , Signal Transduction/drug effects , Benzoquinones/pharmacology , Carcinogenesis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , ErbB Receptors/genetics , HEK293 Cells , Humans , Oxidation-Reduction/drug effects , Propionates/pharmacology , RNA, Messenger/genetics , Transcription, Genetic/drug effects
11.
Nat Commun ; 8(1): 1204, 2017 10 31.
Article in English | MEDLINE | ID: mdl-29089489

ABSTRACT

Androgen deprivation (AD) therapy failure leads to terminal and incurable castration-resistant prostate cancer (CRPC). We show that the redox-protective protein thioredoxin-1 (TRX1) increases with prostate cancer progression and in androgen-deprived CRPC cells, suggesting that CRPC possesses an enhanced dependency on TRX1. TRX1 inhibition via shRNA or a phase I-approved inhibitor, PX-12 (untested in prostate cancer), impedes the growth of CRPC cells to a greater extent than their androgen-dependent counterparts. TRX1 inhibition elevates reactive oxygen species (ROS), p53 levels and cell death in androgen-deprived CRPC cells. Unexpectedly, TRX1 inhibition also elevates androgen receptor (AR) levels under AD, and AR depletion mitigates both TRX1 inhibition-mediated ROS production and cell death, suggesting that AD-resistant AR expression in CRPC induces redox vulnerability. In vivo TRX1 inhibition via shRNA or PX-12 reverses the castration-resistant phenotype of CRPC cells, significantly inhibiting tumor formation under systemic AD. Thus, TRX1 is an actionable CRPC therapeutic target through its protection against AR-induced redox stress.


Subject(s)
Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/metabolism , Thioredoxins/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Progression , Disulfides/pharmacology , Humans , Imidazoles/pharmacology , Male , Reactive Oxygen Species/metabolism
12.
Cancers (Basel) ; 9(5)2017 May 08.
Article in English | MEDLINE | ID: mdl-28481306

ABSTRACT

Many tumors sustain elevated levels of reactive oxygen species (ROS), which drive oncogenic signaling. However, ROS can also trigger anti-tumor responses, such as cell death or senescence, through induction of oxidative stress and concomitant DNA damage. To circumvent the adverse consequences of elevated ROS levels, many tumors develop adaptive responses, such as enhanced redox-protective or oxidatively-generated damage repair pathways. Targeting these enhanced oxidative stress-protective mechanisms is likely to be both therapeutically effective and highly specific to cancer, as normal cells are less reliant on such mechanisms. In this review, we discuss one such stress-protective protein human MutT Homolog1 (MTH1), an enzyme that eliminates 8-oxo-7,8-dihydro-2'-deoxyguanosine triphosphate (8-oxodGTP) through its pyrophosphatase activity, and is found to be elevated in many cancers. Our studies, and subsequently those of others, identified MTH1 inhibition as an effective tumor-suppressive strategy. However, recent studies with the first wave of MTH1 inhibitors have produced conflicting results regarding their cytotoxicity in cancer cells and have led to questions regarding the validity of MTH1 as a chemotherapeutic target. To address the proverbial "elephant in the room" as to whether MTH1 is a bona fide chemotherapeutic target, we provide an overview of MTH1 function in the context of tumor biology, summarize the current literature on MTH1 inhibitors, and discuss the molecular contexts likely required for its efficacy as a therapeutic target.

13.
PeerJ ; 4: e2104, 2016.
Article in English | MEDLINE | ID: mdl-27330862

ABSTRACT

Metabolomic profiling is an increasingly important method for identifying potential biomarkers in cancer cells with a view towards improved diagnosis and treatment. Nuclear magnetic resonance (NMR) provides a potentially noninvasive means to accurately characterize differences in the metabolomic profiles of cells. In this work, we use (1)H NMR to measure the metabolomic profiles of water soluble metabolites extracted from isogenic control and oncogenic HRAS-, KRAS-, and NRAS-transduced BEAS2B lung epithelial cells to determine the robustness of NMR metabolomic profiling in detecting differences between the transformed cells and their untransformed counterparts as well as differences among the RAS-transformed cells. Unique metabolomic signatures between control and RAS-transformed cell lines as well as among the three RAS isoform-transformed lines were found by applying principal component analysis to the NMR data. This study provides a proof of principle demonstration that NMR-based metabolomic profiling can robustly distinguish untransformed and RAS-transformed cells as well as cells transformed with different RAS oncogenic isoforms. Thus, our data may potentially provide new diagnostic signatures for RAS-transformed cells.

14.
Mol Pharmacol ; 89(2): 226-32, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26573582

ABSTRACT

The metalloid arsenic is a worldwide environmental toxicant, exposure to which is associated with many adverse outcomes. Arsenic is also an effective therapeutic agent in certain disease settings. Arsenic was recently shown to regulate the activity of the Hedgehog (HH) signal transduction pathway, and this regulation of HH signaling was proposed to be responsible for a subset of arsenic's biologic effects. Surprisingly, these separate reports proposed contradictory activities for arsenic, as either an agonist or antagonist of HH signaling. Here we provide in vitro and in vivo evidence that arsenic acts as a modulator of the activity of the HH effector protein glioma-associated oncogene family zinc finger (GLI), activating or inhibiting GLI activity in a context-dependent manner. This arsenic-induced modulation of HH signaling is observed in cultured cells, patients with colorectal cancer who have received arsenic-based therapy, and a mouse colorectal cancer xenograft model. Our results show that arsenic activates GLI signaling when the intrinsic GLI activity is low but inhibits signaling in the presence of high-level GLI activity. Furthermore, we show that this modulation occurs downstream of primary cilia, evidenced by experiments in suppressor of fused homolog (SUFU) deficient cells. Combining our findings with previous reports, we present an inclusive model in which arsenic plays dual roles in GLI signaling modulation: when GLIs are primarily in their repressor form, arsenic antagonizes their repression capacity, leading to low-level GLI activation, but when GLIs are primarily in their activator form, arsenic attenuates their activity.


Subject(s)
Arsenic/pharmacology , Signal Transduction/physiology , Transcription Factors/biosynthesis , Transcription Factors/genetics , Transcription, Genetic/physiology , Animals , Female , HCT116 Cells , Humans , Mice , Mice, Nude , NIH 3T3 Cells , Signal Transduction/drug effects , Transcription Factors/antagonists & inhibitors , Transcription, Genetic/drug effects , Xenograft Model Antitumor Assays/methods , Zinc Finger Protein GLI1
15.
Oncoscience ; 2(10): 785-6, 2015.
Article in English | MEDLINE | ID: mdl-26682244
16.
Oncoscience ; 2(8): 703-15, 2015.
Article in English | MEDLINE | ID: mdl-26425662

ABSTRACT

The anti-apoptotic protein Mcl-1 is highly expressed in castration-resistant prostate cancer (CRPC), resulting in resistance to apoptosis and association with poor prognosis. Although predominantly localized in the cytoplasm, there is evidence that Mcl-1 exhibits nuclear localization where it is thought to protect against DNA damage-induced cell death. The role of Mcl-1 in mediating resistance to chemotherapy-induced DNA damage in prostate cancer (PCa) is not known. We show in human PCa cell lines and in TRAMP, a transgenic mouse model of PCa, that the combination of the antimitotic agent ENMD-1198 (analog of 2-methoxyestradiol) with betulinic acid (BA, increases proteotoxic stress) targets Mcl-1 by increasing its proteasomal degradation, resulting in increased γH2AX (DNA damage) and apoptotic/necrotic cell death. Knockdown of Mcl-1 in CRPC cells leads to elevated γH2AX, DNA strand breaks, and cell death after treatment with 1198 + BA- or doxorubicin. Additional knockdowns in PC3 cells suggests that cytoplasmic Mcl-1 protects against DNA damage by blocking the mitochondrial release of apoptosis-inducing factor and thereby preventing its nuclear translocation and subsequent interaction with the cyclophilin A endonuclease. Overall, our results suggest that chemotherapeutic agents that target Mcl-1 will promote cell death in response to DNA damage, particularly in CRPC.

17.
Oncotarget ; 6(13): 11519-29, 2015 May 10.
Article in English | MEDLINE | ID: mdl-25893378

ABSTRACT

Due to sustaining elevated reactive oxygen species (ROS), oncogenic RAS-transformed cells upregulate redox-protective genes, among them the mammalian 8-oxodGTPase, MutT Homolog 1 (MTH1). We previously showed MTH1 abrogates RAS oncogene-induced senescence (OIS) in normal cells and that its inhibition compromises the tumorigenicity of established oncogenic RAS-harboring cancer cells. Here, we investigated how pre-transformation MTH1 levels in immortalized cells influence HRASV12-induced oncogenic transformation. We find MTH1 suppression prior to HRASV12 transduction into BEAS2B immortalized epithelial cells compromised maintenance of high RASV12- and oncogenic ROS-expressing cell populations. Furthermore, pre-transformation MTH1 levels modulated the efficiency of HRASV12-mediated soft agar colony formation. Downstream transformation-associated traits such as the epithelial-mesenchymal transition (EMT) were also compromised by MTH1 inhibition. These collective effects were observed to a greater degree in cells harboring high vs. low RASV12 levels, suggesting MTH1 is required for tumor cells to accumulate RAS oncoprotein. This is significant as, a priori, one cannot ascertain whether tumor-promoting adaptations wrought by introducing oncogenic RAS into an immortalized cell are capable of overcoming pre-transformation deficiencies. Our results suggest nucleotide pool sanitization comprises an important transformation-promoting requirement that, if compromised, cannot be adequately compensated post-transformation and thus is likely to affect optimal development and progression of RAS-driven tumors.


Subject(s)
Cell Transformation, Neoplastic/metabolism , DNA Repair Enzymes/metabolism , Epithelial Cells/enzymology , Phosphoric Monoester Hydrolases/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Carcinoma, Non-Small-Cell Lung/enzymology , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , DNA Repair Enzymes/genetics , Epithelial Cells/pathology , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Glycolysis , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Oxidative Stress , Phosphoric Monoester Hydrolases/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Reactive Oxygen Species/metabolism , Signal Transduction , Time Factors , Transfection
18.
PLoS One ; 8(6): e68003, 2013.
Article in English | MEDLINE | ID: mdl-23840802

ABSTRACT

Androgen deprivation (AD) is an effective method for initially suppressing prostate cancer (PC) progression. However, androgen-refractory PC cells inevitably emerge from the androgen-responsive tumor, leading to incurable disease. Recent studies have shown AD induces cellular senescence, a phenomenon that is cell-autonomously tumor-suppressive but which confers tumor-promoting adaptations that can facilitate the advent of senescence-resistant malignant cell populations. Because androgen-refractory PC cells emerge clonally from the originally androgen-responsive tumor, we sought to investigate whether AD-induced senescence (ADIS) affects acquisition of androgen-refractory behavior in androgen-responsive LNCaP and LAPC4 prostate cancer cells. We find that repeated exposure of these androgen-responsive cells to senescence-inducing stimuli via cyclic AD leads to the rapid emergence of ADIS-resistant, androgen-refractory cells from the bulk senescent cell population. Our results show that the ADIS phenotype is associated with tumor-promoting traits, notably chemoresistance and enhanced pro-survival mechanisms such as inhibition of p53-mediated cell death, which encourage persistence of the senescent cells. We further find that pharmacologic enforcement of p53/Bax activation via Nutlin-3 prior to establishment of ADIS is required to overcome the associated pro-survival response and preferentially trigger pervasive cell death instead of senescence during AD. Thus our study demonstrates that ADIS promotes outgrowth of androgen-refractory PC cells and is consequently a suboptimal tumor-suppressor response to AD.


Subject(s)
Androgens/genetics , Androgens/metabolism , Cellular Senescence/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Cell Death/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Humans , Male , Prostatic Neoplasms/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
19.
Small GTPases ; 3(2): 120-5, 2012.
Article in English | MEDLINE | ID: mdl-22790201

ABSTRACT

Oncogenic RAS-induced reactive oxygen species (ROS) trigger barriers to cell transformation and cancer progression through tumor-suppressive responses such as cellular senescence or cell death. We have recently shown that oncogenic RAS-induced DNA damage and attendant premature senescence can be prevented by overexpressing human MutT Homolog 1 (MTH1), the major mammalian detoxifier of the oxidized DNA precursor, 8-oxo-dGTP. Paradoxically, RAS-induced ROS are also able to participate in tumor progression via transformative processes such as mitogenic signaling, the epithelial-mesenchymal transition (EMT), anoikis inhibition, and PI3K/Akt-mediated survival signaling. Here we provide a preliminary insight into the influence of MTH1 levels on the EMT phenotype and Akt activation in RAS-transformed HMLE breast epithelial cells. Within this context, we will discuss the implications of MTH1 upregulation in oncogenic RAS-sustaining cells as a beneficial adaptive change that inhibits ROS-mediated cell senescence and participates in the maintenance of ROS-associated tumor-promoting mechanisms. Accordingly, targeting MTH1 in RAS-transformed tumor cells will not only induce proliferative defects but also potentially enhance therapeutic cytotoxicity by shifting cellular response away from pro-survival mechanisms.


Subject(s)
Breast Neoplasms/metabolism , DNA Repair Enzymes/metabolism , Epithelial-Mesenchymal Transition , Phosphoric Monoester Hydrolases/metabolism , Reactive Oxygen Species/metabolism , ras Proteins/metabolism , Breast/cytology , Breast/metabolism , Breast/pathology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line , Cell Transformation, Neoplastic , Cellular Senescence , DNA Repair Enzymes/genetics , Female , Humans , Phosphoric Monoester Hydrolases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Up-Regulation
20.
BMC Biotechnol ; 12: 3, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22248071

ABSTRACT

BACKGROUND: Cloning vectors capable of retroviral transduction have enabled stable gene overexpression in numerous mitotic cell lines. However, the relatively small number of feasible restriction enzyme sequences in their cloning sites can hinder successful generation of overexpression constructs if these sequences are also present in the target cDNA insert. RESULTS: Utilizing ligation-independent cloning (LIC) technology, we have modified the highly efficient retroviral transduction vector, pBABE, to eliminate reliance on restriction enzymes for cloning. Instead, the modified plasmid, pBLIC, utilizes random 12/13-base overhangs generated by T4 DNA polymerase 3' exonuclease activity. PCR-based introduction of the complementary sequence into any cDNA of interest enables universal cloning into pBLIC. Here we describe creation of the pBLIC plasmid, and demonstrate successful cloning and protein overexpression from three different cDNAs, Bax, catalase, and p53 through transduction into the human prostate cancer cell line, LNCaP or the human lung cancer line, H358. CONCLUSIONS: Our results show that pBLIC vector retains the high transduction efficiency of the original pBABE while eliminating the requirement for checking individual cDNA inserts for internal restriction sites. Thus it comprises an effective retroviral cloning system for laboratory-scale stable gene overexpression or for high-throughput applications such as creation of retroviral cDNA libraries. To our knowledge, pBLIC is the first LIC vector for retroviral transduction-mediated stable gene expression in mammalian cells.


Subject(s)
Cloning, Molecular/methods , Genetic Vectors , Retroviridae/genetics , Transduction, Genetic , Catalase/biosynthesis , Catalase/genetics , Cell Line, Tumor , DNA Restriction Enzymes/metabolism , DNA, Complementary/genetics , DNA, Complementary/metabolism , Gene Expression , Humans , Plasmids , Reproducibility of Results , Tumor Suppressor Protein p53/biosynthesis , Tumor Suppressor Protein p53/genetics , bcl-2-Associated X Protein/biosynthesis , bcl-2-Associated X Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...