Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935825

ABSTRACT

In spite of the widespread use of alkanols as penetration enhancers, their effect on vesicular formulations remains largely unexplored. These can affect the stability and integrity of the phospholipid bilayers. In this study, we have investigated the interaction of linear (ethanol, butanol, hexanol, octanol) and branched alkanols (t-amylol and t-butanol) with three phospholipids (soya lecithin, SL; soy L-α-phosphatidylcholine, SPC; and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC). Thermodynamic and structural aspects of these interactions were studied as a function of the alkanol concentration and chain length. Our interpretations are based on isothermal titration calorimetry (ITC) and dynamic light scattering (DLS) experiments. We observed one-site interactions wherein hydroxyl and acyl groups interacted with the polar and nonpolar regions of the phospholipid, respectively. The stability and structural integrity of bilayers appeared to be dependent upon (a) the hydrocarbon chain length and concentration of alcohols, and (b) the degree of unsaturation in the phospholipid molecule. We found that these interactions triggered a reduction in the enthalpy which was compensated by increased entropy, keeping free energy negative. Drop in enthalpy indicates reversible disordering of the bilayer which enables the diffusion of alcohol without triggering destabilization. Ethanol engaged predominantly with the interface, and it resulted in higher enthalpic changes. Interactions became increasingly unfavorable with longer alcohols - a cutoff point was recorded with hexanol. The overall sequence of membrane disordering capability was recorded as follows: ethanol < butanol < octanol < hexanol. Octanol's larger size restricted its penetration in the bilayer, and hence it caused less enthalpic changes relative to hexanol. This could also be verified from the trends in the area ratio of these vesicles obtained from the DLS data. Branched alkanols displayed a lower binding affinity with the phospholipids relative to their linear counterparts. These data are useful while contemplating the inclusion of short-chain alcohols as penetration enhancers in phospholipid vesicles.

2.
Langmuir ; 39(26): 9060-9068, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37337424

ABSTRACT

We present a comprehensive investigation on the interaction of tetronics (T1304 and T1307) with some important physiological salts (NaH2PO4, KH2PO4, Na2CO3, NaCl, and KI). Thermodynamic and microstructural aspects of these interactions were studied as a function of the solution temperature, pH and salt concentration. Characterizations were performed using turbidimetric, calorimetric, and scattering techniques. We show that, at ambient temperature, T1304 molecules aggregated to form spherical core-shell aggregates displaying a unimodal distribution pattern. On the other hand, unimers and large clusters dominated in the case of highly hydrophilic T1307. Its micellization was promoted in the presence of salts as per the following trend: NaCl < KH2PO4 < NaH2PO4 ≪ Na2CO3. Aggregation was found to be endothermic, and hydrophobic interactions (TΔSmic > ΔHmic) prevailed. The enthalpy-entropy compensation plot was found to be linear for both copolymers. Demicellization occurred in the presence of KI as it facilitated the buildup of water structures around the copolymer chains. This could be verified from the increase in the cloud point, critical micelle concentration, and free energy. Overall, the temperature and salts inflicted a stronger hydrophobic effect upon T1304 in comparison to T1307.

3.
Curr Genet ; 63(4): 765-776, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28204881

ABSTRACT

Replication of linear chromosomes is facilitated by firing of multiple replication origins that ensures timely duplication of the entire chromosome. The Smc5/6 complex is thought to play an important role in replication by its involvement in the restart of collapsed replication forks. Here, we present genetic evidence for functional interaction between replication origin distribution and two subunits of the Smc5/6 complex, Smc6 and Mms21, as well as Top1. An artificial chromosome that has a long arm having low origin density (5ori∆YAC) is relatively unstable compared to the YAC having normal origin distribution in wild-type cells, but is partially stabilized in smc6-56 and top1∆ mutants. While a SUMO-ligase-deficient mutant of Mms21 does not affect stability of the 5ori∆YAC by itself, in combination with top1∆, the 5ori∆YAC is destabilized as evidenced by increased chromosome loss frequency in the mms21∆sl top1∆ double mutant. Likewise, the smc6-56 top1∆ double mutant also exhibits enhanced destabilization of the 5ori∆YAC compared to either single mutant. Such an increase in chromosome loss is not observed for a similar YAC that retains the original replication origins and normal origin distribution on the long arm, in either double mutant having the mms21∆sl or smc6-56 mutations in combination with top1∆. Our findings reveal a requirement for the Smc5/6 complex, including Mms21/Nse2 mediated sumoylation, and topoisomerase-1 (Top1), for maintaining stability of a chromosome having low origin density and suggest a functional cooperation between the Smc5/6 complex and Top1 in maintenance of topologically challenged chromosomes prone to replication fork collapse or accumulation of torsional stress.


Subject(s)
Cell Cycle Proteins/genetics , DNA Replication/genetics , DNA Topoisomerases, Type I/genetics , SUMO-1 Protein/genetics , Saccharomyces cerevisiae Proteins/genetics , Chromosomal Instability/genetics , Chromosomes, Fungal/genetics , DNA Repair/genetics , Multiprotein Complexes/genetics , Mutation , Recombination, Genetic , Replication Origin/genetics , Saccharomyces cerevisiae/genetics , Sumoylation/genetics , Torsion, Mechanical
4.
Curr Genet ; 63(4): 627-645, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27872982

ABSTRACT

Genetic information in cells is encrypted in DNA molecules forming chromosomes of varying sizes. Accurate replication and partitioning of chromosomes in the crowded cellular milieu is a complex process involving duplication, folding and movement. Longer chromosomes may be more susceptible to mis-segregation or DNA damage and there may exist specialized physiological mechanisms preventing this. Here, we present genetic evidence for such a mechanism which depends on Mms21/Nse2 mediated sumoylation and topoisomerase-1 (Top1) for maintaining stability of longer chromosomes. While mutations inactivating Top1 or the SUMO ligase activity of Mms21 (mms21sl) individually destabilized yeast artificial chromosomes (YACs) to a modest extent, the mms21sl top1 double mutant exhibited a synthetic-sick phenotype, and showed preferential destabilization of the longer chromosome relative to shorter chromosomes. In contrast, an smc6-56 top1 mutant defective in Smc6, another subunit of the Smc5/6 complex, of which Mms21 is a component, did not show such a preferential enhancement in frequency of loss of the longer YAC, indicating that this defect may be specific to the deficiency in SUMO ligase activity of Mms21 in the mms21sl top1 mutants. In addition, mms21sl top1 double mutants harboring a longer fusion derivative of natural yeast chromosomes IV and XII displayed reduced viability, consistent with enhanced chromosome instability, relative to single mutants or the double mutant having the natural (shorter) non-fused chromosomes. Our findings reveal a functional interplay between Mms21 and Top1 in maintenance of longer chromosomes, and suggest that lack of sumoylation of Mms21 targets coupled with Top1 deficiency is a crucial requirement for accurate inheritance of longer chromosomes.


Subject(s)
Chromosomal Instability/genetics , Chromosomes, Fungal/genetics , DNA Topoisomerases, Type I/genetics , SUMO-1 Protein/genetics , Saccharomyces cerevisiae Proteins/genetics , Cell Cycle Proteins/genetics , DNA Damage/genetics , DNA Replication/genetics , Mutation , Recombination, Genetic , Saccharomyces cerevisiae/genetics , Sumoylation/genetics
5.
BMC Genomics ; 15: 959, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25373614

ABSTRACT

BACKGROUND: Over the course of its intraerythrocytic developmental cycle (IDC), the malaria parasite Plasmodium falciparum tightly orchestrates the rise and fall of transcript levels for hundreds of genes. Considerable debate has focused on the relative importance of transcriptional versus post-transcriptional processes in the regulation of transcript levels. Enzymatically active forms of RNAPII in other organisms have been associated with phosphorylation on the serines at positions 2 and 5 of the heptad repeats within the C-terminal domain (CTD) of RNAPII. We reasoned that insight into the contribution of transcriptional mechanisms to gene expression in P. falciparum could be obtained by comparing the presence of enzymatically active forms of RNAPII at multiple genes with the abundance of their associated transcripts. RESULTS: We exploited the phosphorylation state of the CTD to detect enzymatically active forms of RNAPII at most P. falciparum genes across the IDC. We raised highly specific monoclonal antibodies against three forms of the parasite CTD, namely unphosphorylated, Ser5-P and Ser2/5-P, and used these in ChIP-on-chip type experiments to map the genome-wide occupancy of RNAPII. Our data reveal that the IDC is divided into early and late phases of RNAPII occupancy evident from simple bi-phasic RNAPII binding profiles. By comparison to mRNA abundance, we identified sub-sets of genes with high occupancy by enzymatically active forms of RNAPII and relatively low transcript levels and vice versa. We further show that the presence of active and repressive histone modifications correlates with RNAPII occupancy over the IDC. CONCLUSIONS: The simple early/late occupancy by RNAPII cannot account for the complex dynamics of mRNA accumulation over the IDC, suggesting a major role for mechanisms acting downstream of RNAPII occupancy in the control of gene expression in this parasite.


Subject(s)
Genome, Protozoan , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , RNA Polymerase II/metabolism , Antibodies, Monoclonal/pharmacology , Binding Sites/genetics , Chromatin Immunoprecipitation , Cluster Analysis , Computational Biology , Erythrocytes/parasitology , Gene Dosage , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Humans , Molecular Sequence Annotation , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Protein Subunits/antagonists & inhibitors , RNA Polymerase II/antagonists & inhibitors , RNA Polymerase II/chemistry , RNA, Messenger/genetics , Transcription, Genetic , Transcriptional Activation
6.
J Biol Chem ; 286(16): 14516-30, 2011 Apr 22.
Article in English | MEDLINE | ID: mdl-21324902

ABSTRACT

The SUMO ligase activity of Mms21/Nse2, a conserved member of the Smc5/6 complex, is required for resisting extrinsically induced genotoxic stress. We report that the Mms21 SUMO ligase activity is also required during the unchallenged mitotic cell cycle in Saccharomyces cerevisiae. SUMO ligase-defective cells were slow growing and spontaneously incurred DNA damage. These cells required caffeine-sensitive Mec1 kinase-dependent checkpoint signaling for survival even in the absence of extrinsically induced genotoxic stress. SUMO ligase-defective cells were sensitive to replication stress and displayed synthetic growth defects with DNA damage checkpoint-defective mutants such as mec1, rad9, and rad24. MMS21 SUMO ligase and mediator of replication checkpoint 1 gene (MRC1) were epistatic with respect to hydroxyurea-induced replication stress or methyl methanesulfonate-induced DNA damage sensitivity. Subjecting Mms21 SUMO ligase-deficient cells to transient replication stress resulted in enhancement of cell cycle progression defects such as mitotic delay and accumulation of hyperploid cells. Consistent with the spontaneous activation of the DNA damage checkpoint pathway observed in the Mms21-mediated sumoylation-deficient cells, enhanced frequency of chromosome breakage and loss was detected in these mutant cells. A mutation in the conserved cysteine 221 that is engaged in coordination of the zinc ion in Loop 2 of the Mms21 SPL-RING E3 ligase catalytic domain resulted in strong replication stress sensitivity and also conferred slow growth and Mec1 dependence to unchallenged mitotically dividing cells. Our findings establish Mms21-mediated sumoylation as a determinant of cell cycle progression and maintenance of chromosome integrity during the unperturbed mitotic cell division cycle in budding yeast.


Subject(s)
Chromosomes/metabolism , Gene Expression Regulation, Fungal , SUMO-1 Protein/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Alleles , Amino Acid Sequence , Catalytic Domain , Chromosomes, Artificial, Yeast , Disease Progression , Epistasis, Genetic , Mitosis , Molecular Sequence Data , Mutagenesis, Site-Directed , Sequence Homology, Amino Acid , Telomere/ultrastructure , Ubiquitin-Protein Ligases/chemistry
7.
Mol Cell Biol ; 29(10): 2889-98, 2009 May.
Article in English | MEDLINE | ID: mdl-19289503

ABSTRACT

In Saccharomyces cerevisiae, transcriptional silencing occurs at the cryptic mating-type loci (HML and HMR), telomeres, and ribosomal DNA (rDNA; RDN1). Silencing in the rDNA is unusual in that polymerase II (Pol II) promoters within RDN1 are repressed by Sir2 but not Sir3 or Sir4. rDNA silencing unidirectionally spreads leftward, but the mechanism of limiting its spreading is unclear. We searched for silencing barriers flanking the left end of RDN1 by using an established assay for detecting barriers to HMR silencing. Unexpectedly, the unique sequence immediately adjacent to RDN1, which overlaps a prominent cohesin binding site (CARL2), did not have appreciable barrier activity. Instead, a fragment located 2.4 kb to the left, containing a tRNA(Gln) gene and the Ty1 long terminal repeat, had robust barrier activity. The barrier activity was dependent on Pol III transcription of tRNA(Gln), the cohesin protein Smc1, and the SAS1 and Gcn5 histone acetyltransferases. The location of the barrier correlates with the detectable limit of rDNA silencing when SIR2 is overexpressed, where it blocks the spreading of rDNA heterochromatin. We propose a model in which normal Sir2 activity results in termination of silencing near the physical rDNA boundary, while tRNA(Gln) blocks silencing from spreading too far when nucleolar Sir2 pools become elevated.


Subject(s)
DNA, Ribosomal/genetics , Gene Expression Regulation, Fungal , Gene Silencing , Heterochromatin/metabolism , Histone Deacetylases/metabolism , Saccharomyces cerevisiae , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism , Sirtuins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA, Ribosomal/metabolism , Genome, Fungal , Histone Acetyltransferases/metabolism , Histone Deacetylases/genetics , Microarray Analysis , RNA Polymerase III/metabolism , RNA, Transfer, Gln/genetics , RNA, Transfer, Gln/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics , Sirtuin 2 , Sirtuins/genetics , Cohesins
SELECTION OF CITATIONS
SEARCH DETAIL
...