Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 14: 1228749, 2023.
Article in English | MEDLINE | ID: mdl-38111879

ABSTRACT

Fusarium species are cosmopolitan soil phytopathogens from the division Ascomycota, which produce mycotoxins and cause significant economic losses of crop plants. However, soils suppressive to Fusarium diseases are known to occur, and recent knowledge on microbial diversity in these soils has shed new lights on phytoprotection effects. In this review, we synthesize current knowledge on soils suppressive to Fusarium diseases and the role of their rhizosphere microbiota in phytoprotection. This is an important issue, as disease does not develop significantly in suppressive soils even though pathogenic Fusarium and susceptible host plant are present, and weather conditions are suitable for disease. Soils suppressive to Fusarium diseases are documented in different regions of the world. They contain biocontrol microorganisms, which act by inducing plants' resistance to the pathogen, competing with or inhibiting the pathogen, or parasitizing the pathogen. In particular, some of the Bacillus, Pseudomonas, Paenibacillus and Streptomyces species are involved in plant protection from Fusarium diseases. Besides specific bacterial populations involved in disease suppression, next-generation sequencing and ecological networks have largely contributed to the understanding of microbial communities in soils suppressive or not to Fusarium diseases, revealing different microbial community patterns and differences for a notable number of taxa, according to the Fusarium pathosystem, the host plant and the origin of the soil. Agricultural practices can significantly influence soil suppressiveness to Fusarium diseases by influencing soil microbiota ecology. Research on microbial modes of action and diversity in suppressive soils should help guide the development of effective farming practices for Fusarium disease management in sustainable agriculture.

2.
Syst Appl Microbiol ; 46(4): 126425, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37146562

ABSTRACT

Pseudomonas strains IT-194P, IT-215P, IT-P366T and IT-P374T were isolated from the rhizospheres of wheat grown in soils sampled from different fields (some of them known to be disease-suppressive) located near Mionica, Serbia. Phylogenetic analysis of the 16S rRNA genes and of whole genome sequences showed that these strains belong to two potentially new species, one containing strains IT-P366T and IT-194P and clustering (whole genome analysis) next to P. umsongensis DSM16611T, and another species containing strains IT-P374T and IT-215P and clustering next to P. koreensis LMG21318T. Genome analysis confirmed the proposition of novel species, as ANI was below the threshold of 95% and dDDH below 70% for strains IT-P366T (compared with P. umsongensis DSM16611T) and IT-P374T (compared with P. koreensis LMG21318T). Unlike P. umsongensis DSM16611T, strains of P. serbica can grow on D-mannitol, but not on pectin, D-galacturonic acid, L-galactonic acid lactone and α-hydroxybutyric acid. In contrary to P. koreensis LMG21318T, strains of P. serboccidentalis can use sucrose, inosine and α-ketoglutaric acid (but not L-histidine) as carbon sources. Altogether, these results indicate the existence of two novel species for which we propose the names Pseudomonas serbica sp. nov., with the type strain IT-P366T (=CFBP 9060 T = LMG 32732 T = EML 1791 T) and Pseudomonas serboccidentalis sp. nov., with the type strain IT-P374T (=CFBP 9061 T = LMG 32734 T = EML 1792 T). Strains from this study presented a set of phytobeneficial functions modulating plant hormonal balance, plant nutrition and plant protection, suggesting a potential as Plant Growth-Promoting Rhizobacteria (PGPR).


Subject(s)
Pseudomonas , Triticum , Triticum/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Serbia , Rhizosphere , DNA, Bacterial/genetics , Fatty Acids/analysis , Bacterial Typing Techniques , Nucleic Acid Hybridization
3.
Environ Microbiome ; 18(1): 20, 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36934265

ABSTRACT

The adaptability of halophytes to increased soil salinity is related to complex rhizosphere interactions. In this study, an integrative approach, combining culture-independent and culture-dependent techniques was used to analyze the bacterial communities in the endorizosphere of indigenous succulent halophytes Salicornia europaea, Suaeda maritima, and Camphorosma annua from the natural salt marshes of Slano Kopovo (Serbia). The 16 S rDNA analyses gave, for the first time, an insight into the composition of the endophytic bacterial communities of S. maritima and C. annua. We have found that the composition of endophyte microbiomes in the same habitat is to some extent influenced by plant species. A cultivable portion of the halophyte microbiota was tested at different NaCl concentrations for the set of plant growth promoting (PGP) traits. Through the mining of indigenous halotolerant endophytes, we obtained a collection representing a core endophyte microbiome conferring desirable PGP traits. The majority (65%) of the selected strains belonged to the common halotolerant/halophilic genera Halomonas, Kushneria, and Halobacillus, with representatives exhibiting multiple PGP traits, and retaining beneficial traits in conditions of the increased salinity. The results suggest that the root endosphere of halophytes is a valuable source of PGP bacteria supporting plant growth and fitness in salt-affected soils.

4.
Bioelectromagnetics ; 42(3): 238-249, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33544924

ABSTRACT

Different priming methods were developed to improve seed germination and the early growth of seedlings. This study aimed to examine the combined effect of bacterial inoculation and static magnetic field on white mustard (Sinapis alba L.) germination. A plant growth-promoting bacterial strain Bacillus amyloliquefaciens D5 ARV was used for biopriming. The static magnetic field of 90 mT was applied for 5 and 15 min. Analyses of abscisic acid, chlorophyll, anthocyanins, flavonoids content, nitrogen balance index, and bacterial indole-3-acetic acid were used to explain observed effects. Bacterial inoculation improved seed germination, whereas exposure to 90 mT for 15 min suppressed germination. Such an unfavorable effect was neutralized when the treatment with the static magnetic field was combined with bacterial inoculation. The highest germination percentage was a result of synergistic action of B. amyloliquefaciens D5 ARV and 15 min long exposure to 90 mT, which induced an increase of 53.20% in the number of germinated seeds. The static magnetic field induced the increase of bacterial indole-3-acetic acid production threefold times. Biomagnetic priming caused a metabolic shift from primary to secondary metabolism in the white mustard seedlings. An adequate combination of biological priming and static magnetic field treatment can be successfully used in old seed revitalization and germination improvements. © 2021 Bioelectromagnetics Society.


Subject(s)
Anthocyanins , Germination , Chlorophyll , Seedlings , Seeds
5.
Environ Monit Assess ; 192(6): 364, 2020 May 14.
Article in English | MEDLINE | ID: mdl-32409938

ABSTRACT

Surface mining activities, despite their benefits, lead to the deterioration of local and regional environmental quality and play a role in global ecosystem pollution. This research aimed to estimate the culturable microbial population structure at five locations near the opencast coal mine "Kakanj" (Bosnia and Herzegovina) via agar plate and phospholipid fatty acids (PLFA) method and to establish its relationship to the physical and chemical properties of soil. Using the ICP-OES method, the heavy metal pollution of all examined locations (overburden, former grass yard, forest, arable soil, and greenhouse) was observed. Substantial variations among the sites regarding the most expressed indicators of heavy metal pollution were noted; Cr, Pb, Ni, and Cu content ranged from 63.17 to 524.47, 20.57 to 349.47, 139.13 to 2785.67, and 25.97 to 458.73 mg/kg, respectively. In the overburden sample, considerable low microbial activity was detected; the bacterial count was approximately 6- to 18-fold lower in comparison with the other samples. PLFA analysis showed the reduction of microbial diversity, reflected through the prevalence of normal and branched saturated fatty acids, their ratio (ranged from 0.92 to 7.13), and the absence of fungal marker 18:2ω6 fatty acid. The principal component analysis showed a strong negative impact of heavy metals Na and B on main microbial and PLFA profiles. In contrast, stock of main chemical parameters, including Ca, K, Fe, and pH, was positively correlated with the microbial community structure.


Subject(s)
Metals, Heavy , Microbiota , Soil Pollutants , Bosnia and Herzegovina , Coal , Environmental Monitoring , Soil , Soil Microbiology
6.
Microb Pathog ; 120: 23-31, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29684542

ABSTRACT

The microbiologically contaminated vegetables represent a risk for consumers, especially vegetables without thermal processing. It is known that human pathogen bacteria, such as Listeria monocytogenes, could exist on fresh vegetables. The fresh vegetables could become Listeria-contaminated if they come in touch with contaminated soil, manure, irrigation water. The aim of this work was to investigate the presence of Listeria spp. and L. monocytogenes in different kind of vegetables grown in field and greenhouse condition as well as surface and endophytic colonization plant roots of different vegetables species by L. monocytogenes in laboratory conditions. The detection of Listeria spp. and L. monocytogenes in vegetable samples was done using ISO and PCR methods. The investigation of colonization vegetable roots and detection Listeria-cells inside plant root tissue was done using Fluorescence in situ hybridization (FISH) method in combination with confocal laser scanning microscopy (CLSM). The results showed that 25.58% vegetable samples were positive for Listeria spp. and only one sample (carrot) was positive for L. monocytogenes out of 43 samples in total collected from field and greenhouse. The strain L. monocytogenes EGD-E surface and endophytic colonized carrot root in highest degree while strain L. monocytogenes SV4B was the most represented at leafy vegetable plants, such at lettuce (1.68 × 106 cells/mm3 absolutely dry root) and spinach (1.39 × 106 cells/mm3 absolutely dry root) root surface. The cells of L. monocytogenes SV4B were visible as single cells in interior tissue of plant roots (celery and sweet corn roots) as well as in the interior of the plant root cell at sweet corn root. The cells of L. monocytogenes EGD-E bind to the surface of the plant root and they were less commonly found out on root hair. In the inner layers of the root, those bacterial cells were inhabited intercellular spaces mainly as single cells very close to the larval vessels of root. Our results suggest that L. monocytogenes is very good endophytic colonizer of vegetable plant roots.


Subject(s)
Food Contamination/analysis , Food Microbiology , Listeria monocytogenes/isolation & purification , Vegetables/microbiology , Agricultural Irrigation , Bacterial Typing Techniques , Colony Count, Microbial , DNA, Bacterial/analysis , Humans , In Situ Hybridization, Fluorescence , Listeria/classification , Listeria/genetics , Listeria/growth & development , Listeria/isolation & purification , Listeria monocytogenes/genetics , Listeria monocytogenes/growth & development , Oligonucleotide Probes , Plant Leaves/microbiology , Plant Roots/microbiology , Polymerase Chain Reaction , Serbia
7.
Microb Pathog ; 115: 199-207, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29248516

ABSTRACT

Contamination of vegetables and fruits is the result of presence of human pathogen bacteria which can contaminate products in any part of production chain. There is an evidence of presence of: Salmonella spp. on the fresh vegetables and Salmonellosis is connected with tomato, sprouts, cantaloupe etc. The goal of this research is transmission of pathogen bacteria from irrigation water to plants and studying/monitoring the ability of the Salmonella spp. to colonize the surface and interior (endophytic colonization) of root at different vegetable species. Transmission of three Salmonella spp. strains from irrigation water to plants, as well as colonization of plants by these bacteria was investigated by using Fluorescence In Situ Hybridization (FISH) in combination with confocal laser scanning microscopy (CLSM). All tested Salmonella spp. strains showed ability to more or less colonize the surface and interior niches of the root, stem and leaf of the investigated plant species. These bacteria also were found in plant cells cytoplasm, although the mechanism of their entrance has not been clarified yet.


Subject(s)
Food Contamination/analysis , Fruit/microbiology , Plant Leaves/microbiology , Plant Roots/microbiology , Plants/microbiology , Salmonella typhimurium/isolation & purification , Vegetables/microbiology , Colony Count, Microbial , Humans , In Situ Hybridization, Fluorescence , Salmonella Infections/microbiology
8.
Environ Sci Pollut Res Int ; 24(27): 21885-21893, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28779342

ABSTRACT

Modern, efficient, and cost-effective approach to remediation of heavy metal-contaminated soil is based on the application of microorganisms. In this paper, four isolates from agricultural and urban contaminated soil showed abundant growth in the presence of copper(II) sulfate pentahydrate (CuSO4·5H2O) up to 2 mM. Selected yeasts were identified by molecular methods as Candida tropicalis (three isolates) and Schwanniomyces occidentalis (one isolate). C. tropicalis (4TD1101S) showed the highest percentage of bioaccumulation capabilities (94.37%), determined by the inductively coupled plasma optical emission spectrometry (ICP-OES). The Raman spectra of C. tropicalis (4TD1101S) analyzed in a medium with the addition of 2 mM CuSO4·5H2O showed certain increase in metallothionein production, which represents a specific response of the yeast species to the stress conditions. These results indicate that soil yeasts represent a potential for practical application in the bioremediation of contaminated environments.


Subject(s)
Candida tropicalis/metabolism , Copper/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Biodegradation, Environmental , Candida tropicalis/drug effects , Candida tropicalis/isolation & purification , Copper/toxicity , Oxidative Stress/drug effects , Soil/chemistry , Soil Pollutants/toxicity , Spectrum Analysis, Raman
9.
PLoS One ; 12(6): e0179650, 2017.
Article in English | MEDLINE | ID: mdl-28644899

ABSTRACT

Proposed distributed reactivity model of dehydration for seedling parts of two various maize hybrids (ZP434, ZP704) was established. Dehydration stresses were induced thermally, which is also accompanied by response of hybrids to heat stress. It was found that an increased value of activation energy counterparts within radicle dehydration of ZP434, with a high concentration of 24-epibrassinolide (24-EBL) at elevated operating temperatures, probably causes activation of diffusion mechanisms in cutin network and may increases likelihood of formation of free volumes, large enough to accommodate diffusing molecule. Many small random effects were detected and can be correlated with micro-disturbing in a space filled with water caused by thermal gradients, increasing capillary phenomena, and which can induce thermo-capillary migration. The influence of seedling content of various sugars and minerals on dehydration was also examined. Estimated distributed reactivity models indicate a dependence of reactivity on structural arrangements, due to present interactions between water molecules and chemical species within the plant.


Subject(s)
Models, Biological , Seedlings/physiology , Stress, Physiological , Zea mays/physiology , Brassinosteroids/metabolism , Dehydration , Hot Temperature , Membrane Lipids/metabolism , Plant Proteins/metabolism , Seedlings/anatomy & histology , Seeds/anatomy & histology , Seeds/physiology , Species Specificity , Steroids, Heterocyclic/metabolism , Water/metabolism , Zea mays/anatomy & histology
10.
Environ Sci Pollut Res Int ; 24(4): 3375-3386, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27866360

ABSTRACT

Influence of edaphic factors and metal content on diversity of Trichoderma species at 14 different soil sampling locations, on two depths, was examined. Forty-one Trichoderma isolates from 14 sampling sites were determined as nine species based on their internal transcribed spacer (ITS) sequences. Our results indicate that weakly alkaline soils are rich sources of Trichoderma strains. Also, higher contents of available K and P are connected with higher Trichoderma diversity. Increased metal content in soil was not inhibiting factor for Trichoderma species occurrence. Relationship between these factors was confirmed by locally weighted sequential smoothing (LOESS) nonparametric smoothing analysis. Trichoderma strain (Szeged Microbiology Collection (SZMC) 22669) from soil with concentrations of Cr and Ni above remediation values should be tested for its potential for bioremediation of these metals in polluted soils.


Subject(s)
Metals/pharmacology , Soil Pollutants/pharmacology , Soil/chemistry , Trichoderma/chemistry , Soil Microbiology , Trichoderma/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...