Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 104(3): 1308-1321, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37759401

ABSTRACT

BACKGROUND: Elder (Sambucus nigra L.) has relevance for the food, fragrance and pharmaceutical industries. Flowers of this species emit a very pleasant scent; for processing purposes, inflorescences are either collected from the wild or harvested from a cultivated crop. The study of elderflower-derived volatiles bears both phytochemical and commercial importance. RESULTS: Three samples of dry elderflower essential oil obtained from laboratory-scale hydrodistillations were analyzed. By use of gas chromatography-mass spectrometry, synthesis and NMR studies of chromatographic fractions of a distillation water extract prepared in a semi-industrial scale steam distillation, 252 constituents of the oil were identified; 115 compounds were not previously reported as elderflower volatiles, seven of which were new natural esters. Particularly interesting were those of isosenecioic (3-methylbut-3-enoic) acid because these were never before found in the plant kingdom. CONCLUSION: With these identifications, the known essential oil constituents accounted for 89.0-93.0% of the analyzed samples. Although the number of known S. nigra flower-derived volatiles is now quite high, further research (both analytical and olfactory) is needed to unveil all of the relevant contributions to the unique odor of elderflowers. © 2023 Society of Chemical Industry.


Subject(s)
Oils, Volatile , Sambucus nigra , Sambucus nigra/chemistry , Oils, Volatile/analysis , Flowers/chemistry , Inflorescence/chemistry , Gas Chromatography-Mass Spectrometry/methods
2.
Chem Biol Interact ; 383: 110688, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37648052

ABSTRACT

Due to an increased need for new immunomodulatory agents, many previously known molecules have been structurally modified in order to obtain new drugs, preserving at the same time some of the benevolent characteristics of the parent molecule. This study aimed to evaluate the immunomodulatory potential of a selected library of bile acid derivatives (BAD) using a broad spectrum of assays, evaluating rat peritoneal macrophages viability, cell membrane damage, lysosomal and adhesion function, and nitric oxide and cytokine production as a response to lipopolysaccharide stimulation. Also, in silico studies on two bile acid-activated receptors were conducted and the results were related to the observed in vitro effects. All tested BAD exerted significant toxicity in concentrations higher than 10 µM, which was determined based on mitochondria and cell membrane damage in a panel of assays. On the other hand, at lower concentrations, the tested BAD proved to be immunomodulatory since they affected lysosomal function, cell adhesion capacities and the ability to produce inflammatory cytokines in response to a stimulus. One of the compounds proved to exhibit significant toxicity toward macrophages, but also caused a concentration-dependent decrease in nitric oxide levels and was identified as a potential farnesoid X receptor agonist.


Subject(s)
Macrophages , Nitric Oxide , Animals , Rats , Macrophages, Peritoneal , Cell Membrane , Bile Acids and Salts
3.
Front Neurol ; 13: 1101524, 2022.
Article in English | MEDLINE | ID: mdl-36698893

ABSTRACT

Metabolomics has evolved into a particularly useful tool to study interactions between metabolites and serves as an aid in unraveling the complexity of entire metabolomes. Nonetheless, it is increasingly viewed as a methodology with practical applications in the clinical setting, where identifying and quantifying biomarkers of interest could prove useful for diagnostics. Starting from a concise overview of the most prominent analytical techniques employed in metabolomics, herein we present a review of its application in studies of brain metabolism and cerebrovascular diseases, paying most attention to its uses in researching aneurysmal subarachnoid hemorrhage. Both animal models and human studies are considered, and metabolites identified as potential biomarkers are highlighted.

4.
Bioorg Med Chem ; 30: 115935, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33340938

ABSTRACT

A series of 5,6-modified steroidal d-homo lactones, comprising of halogenated and/or oxygenated derivatives, was synthesized and evaluated for potential anticancer properties. Preparation of many of these compounds involved investigating alternative synthetic pathways. In silico ADME testing was performed for both novel and some previously synthesized compounds. Calculated physicochemical properties were in accordance with the Lipinski, Veber, Egan, Ghose and Muegge criteria, suggesting the potential of these molecules as orally active agents. Cytotoxicity of the synthesized steroid derivatives was tested on six tumor and one normal human cell line. None of the investigated derivatives was toxic to non-cancerous MRC-5 control cells. Most of the compounds showed significant cytotoxicity against the treated cancer cell lines. Most notably, the 3ß,5α,6ß-trihydroxy derivative exhibited strong cytotoxicity against multiple cell lines (MCF-7, MDA-MB-231 and HT-29), with the highest effect observed for lung adenocarcinoma (A549) cells, for which this steroid was more cytotoxic than all of the three commercial chemotherapeutic agents used as reference compounds. Molecular docking suggests the 3ß,5α,6ß-trihydroxy derivative could bind the EGFR tyrosine kinase domain with high affinity, providing a potential mechanism for its cytotoxicity via inhibition of EGFR signaling. The most active compounds were further studied for their potential to induce apoptosis by the double-staining fluorescence method; where the 5α,6ß-dibromide, 5α,6ß-dichloride and 3ß,5α,6ß-triol induced apoptotic changes in all three treated cell lines: MDA-MB-231, HT-29 and A549. To predict interactions with nuclear steroidal receptors, affinity for the ligand binding domains of ERα, ERß and AR was measured using a yeast-based fluorescence assay. The 5ß,6ß-epoxide, dibromide and 5α-hydroxy-3,6-dioxo derivatives showed affinity for ERα, while the 5α-fluoro-6ß-hydroxy and 3ß-acetoxy-5α,6ß-dihydroxy derivatives were identified as ERß ligands. None of the tested compounds showed affinity for AR. Structure-activity relationships of selected compounds were also examined.


Subject(s)
Antineoplastic Agents/pharmacology , Lactones/pharmacology , Oxygen/pharmacology , Steroids/pharmacology , A549 Cells , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Halogenation , Humans , Lactones/chemical synthesis , Lactones/chemistry , Models, Molecular , Molecular Structure , Oxygen/chemistry , Steroids/chemical synthesis , Steroids/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...