Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Exp Immunol ; 181(1): 156-63, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25809538

ABSTRACT

The present study aimed to determine different peripheral blood neutrophil functions in 18 morbidly obese subjects with body mass index (BMI) ranging between 35 and 69 kg/m(2) in parallel with age- and gender-matched lean controls. Peripheral blood neutrophil functions of obese subjects and matched lean controls were determined. Neutrophils of obese subjects showed significant elevation of the release of basal superoxides (P < 0.0001), formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated superoxides (P < 0.0001) and opsonized zymosan (OZ)-stimulated superoxides (P < 0.045) compared with lean controls. Interestingly, there were no differences in phorbol myristate acetate (PMA)-stimulated superoxide production by neutrophils of the obese subjects and controls. There was also a significant elevation of chemotactic (P < 0.0003) and random (P < 0.0001) migration of neutrophils from obese subjects compared with lean controls. Phagocytosis, CD11b surface expression and adherence of neutrophils from obese subjects were not significantly different from those of the lean controls. The elevated superoxide production and chemotactic activity, together with the normal phagocytosis and adherence, suggest that neutrophils from obese subjects are primed and have the capability to combat infections. However, neutrophils in the priming state may participate in the pathogenesis of obesity-related diseases.


Subject(s)
Cell Movement/immunology , Neutrophils/immunology , Obesity, Morbid/immunology , Phagocytosis/immunology , Superoxides/metabolism , Adult , Body Mass Index , CD11b Antigen/biosynthesis , Cell Adhesion/immunology , Female , Humans , Male , N-Formylmethionine Leucyl-Phenylalanine/pharmacology , Neutrophils/drug effects , Tetradecanoylphorbol Acetate/pharmacology , Zymosan/pharmacology
2.
J Leukoc Biol ; 76(1): 176-84, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15123778

ABSTRACT

Our previously established model of cytosolic phospholipase A(2) (cPLA(2))-deficient, differentiated PLB-985 cells (PLB-D cells) was used to determine the physiological role of cPLA(2) in eicosanoid production. Parent PLB-985 (PLB) cells and PLB-D cells were differentiated toward the monocyte or granulocyte lineages using 5 x 10(-)(8) M 1,25 dihydroxyvitamin D(3) or 1.25% dimethyl sulfoxide, respectively. Parent monocyte- or granulocyte-like PLB cells released prostaglandin E(2) (PGE(2)) when stimulated by ionomycin, A23187, opsonized zymosan, phorbol 12-myristate 13-acetate, or formyl-Met-Leu-Phe (fMLP), and monocyte- or granulocyte-like PLB-D cells did not release PGE(2) with any of the agonists. The kinetics of cPLA(2) translocation to nuclear fractions in monocyte-like PLB cells stimulated with fMLP or ionomycin was in correlation with the kinetics of PGE(2) production. Granulocyte-like PLB cells, but not granulocyte-like PLB-D cells, secreted leukotriene B(4) (LTB(4)) after stimulation with ionomycin or A23187. Preincubation of monocyte-like parent PLB cells with 100 ng/ml lipopolysaccharide (LPS) for 16 h enhanced stimulated PGE(2) production, which is in correlation with the increased levels of cPLA(2) detected in these cells. LPS preincubation was less potent in increasing PGE(2) and LTB(4) secretion and did not affect cPLA(2) expression in granulocyte-like PLB cells, which may be a result of their lower levels of surface LPS receptor expression. LPS had no effect on monocyte- or granulocyte-like PLB-D cells. The lack of eicosanoid formation in stimulated, differentiated cPLA(2)-deficient PLB cells indicates that cPLA(2) contributes to stimulated eicosanoid formation in monocyte- and granulocyte-like PLB cells.


Subject(s)
Dinoprostone/biosynthesis , Leukotriene B4/biosynthesis , Myeloid Cells/cytology , Myeloid Cells/metabolism , Phagocytes/metabolism , Phospholipases A/metabolism , Cell Differentiation/physiology , Cell Lineage , Cells, Cultured , Cytosol/chemistry , Fluorescent Antibody Technique , Humans , Immunoblotting , Isoenzymes/metabolism , Phagocytes/cytology , Phospholipases A2 , Protein Transport/physiology , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL