Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 1613: 49-58, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-25862572

ABSTRACT

Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson's disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats' nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist.


Subject(s)
Corpus Striatum/metabolism , Diet, High-Fat/adverse effects , Mitochondrial Proteins/metabolism , Parkinsonian Disorders/metabolism , Substantia Nigra/metabolism , Animals , Body Weight , Corpus Striatum/drug effects , Diet, Fat-Restricted , Dopamine/metabolism , Glucose/metabolism , Male , Motor Activity/drug effects , Oxidopamine , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/diet therapy , Rats , Rats, Inbred F344 , Substantia Nigra/drug effects
2.
Analyst ; 140(9): 3039-47, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25785694

ABSTRACT

Caged compounds have been used extensively to investigate neuronal function in a variety of preparations, including cell culture, ex vivo tissue samples, and in vivo. As a first step toward electrochemically measuring the extent of caged compound photoactivation while also measuring the release of the catecholamine neurotransmitter, dopamine, fast-scan cyclic voltammetry at carbon-fiber microelectrodes (FSCV) was used to electrochemically characterize 4-hydroxyphenylacetic acid (4HPAA) in the absence and presence of dopamine. 4HPAA is a by-product formed during the process of photoactivation of p-hydroxyphenacyl-based caged compounds, such as p-hydroxyphenylglutamate (pHP-Glu). Our data suggest that the oxidation of 4HPAA occurs through the formation of a conjugated species. Moreover, we found that a triangular waveform of -0.4 V to +1.3 V to -0.4 V at 600 V s(-1), repeated every 100 ms, provided an oxidation current of 4HPAA that was enhanced with a limit of detection of 100 nM, while also allowing the detection and quantitation of dopamine within the same scan. Along with quantifying 4HPAA in biological preparations, the results from this work will allow the electrochemical measurement of photoactivation reactions that generate 4HPAA as a by-product as well as provide a framework for measuring the photorelease of electroactive by-products from caged compounds that incorporate other chromophores.


Subject(s)
Dopamine/analysis , Electrochemical Techniques/instrumentation , Phenylacetates/analysis , Carbon/chemistry , Carbon Fiber , Equipment Design , Microelectrodes , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...