Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Chem Rec ; 24(2): e202300241, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37728189

ABSTRACT

The review summarizes our recent reports on brightly-emitting materials with varied dimensionality (3D, 2D, 0D) synthesized using "green" chemistry and exhibiting highly efficient photoluminescence (PL) originating from self-trapped exciton (STE) states. The discussion starts with 0D emitters, in particular, ternary indium-based colloidal quantum dots, continues with 2D materials, focusing on single-layer polyheptazine carbon nitride, and further evolves to 3D luminophores, the latter exemplified by lead-free double halide perovskites. The review shows the broadband STE PL to be an inherent feature of many materials produced in mild conditions by "green" chemistry, outlining PL features general for these STE emitters and differences in their photophysical properties. The review is concluded with an outlook on the challenges in the field of STE PL emission and the most promising venues for future research.

2.
ACS Mater Lett ; 5(2): 596-602, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36776692

ABSTRACT

Thermal deposition of halide perovskites as a universal and scalable route to transparent thin films becomes highly challenging in the case of lead-free double perovskites, requiring the evaporation dynamics of multiple metal halide sources to be balanced or a single-phase precursor preliminary synthesized to achieve a reliable control over the composition and the phase of the final films. In the present Letter, the feasibility of the single-source vacuum deposition of microcrystalline Cs2Ag x Na1-x Bi y In1-y Cl6 double perovskites into corresponding transparent nanocrystalline films while preserving the bulk spectral and structural properties is shown. The perovskite films produced from the most emissive powders with x = 0.40 and y = 0.01 revealed a photoluminescence quantum yield of 85%, highlighting thermal evaporation as a promising approach to functional perovskite-based optical materials.

3.
Angew Chem Int Ed Engl ; 62(3): e202212668, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36223136

ABSTRACT

Tailored modifications of halide lead-free perovskites (LFPs) via doping/alloying with metal cations have been recognized as a promising pathway to highly efficient inorganic phosphors with photoluminescence (PL) quantum yields of up to 100 %. Such materials typically display selective sensitivity to UV light, a broad PL range, and long PL lifetimes as well as a unique compositional variability and stability-an ideal combination for many light-harvesting applications. This Minireview presents the state-of-the-art in doped LFPs, focusing on the reports published mostly in the last two to three years. We discuss the factors determining the efficiency and spectral parameters of the broadband PL of doped LFPs depending on the dopant and host matrix, both in micro- and nanocrystalline states, address the most relevant challenges this rapidly developing research area is facing, and outline the most promising concepts for further progress in this field.

4.
Nanoscale ; 14(34): 12347-12357, 2022 Sep 02.
Article in English | MEDLINE | ID: mdl-35971970

ABSTRACT

We introduce a new concept of a "bottom-to-top" design of intercalate carbon nitride compounds based on the effects of self-assembly of colloidal single-layer carbon nitride (SLCN) sheets stabilized by tetraethylammonium hydroxide NEt4OH upon ambient drying of the water solvent. These effects include (i) formation of stage-1 intercalates of NEt4OH during the ambient drying of SLCN colloids on glass substrates and (ii) the spontaneous formation of layered hexagonally-shaped networks of SLCN sheets on freshly-cleaved mica surfaces. The dynamics of the intercalate formation was followed by in situ X-ray diffraction allowing different stages to be identified, including the deposition of a primary "wet" intercalate of hydrated NEt4OH and the gradual elimination of excessive water during its ambient drying. The intercalated NEt4+ cations show a specific "flattened" conformation allowing the dynamics of formation and structure of the intercalate to be probed by vibrational spectroscopies. The two-dimensional self-assembly on mica is assumed to be driven both by the internal hexagonal symmetry of heptazine units and by a templating effect of the mica surface.

5.
Phys Chem Chem Phys ; 23(37): 20745-20764, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34542127

ABSTRACT

This Perspective provides a critical summary of the current state of the art in the synthesis and properties of polyheptazine single-layer carbon nitride (SLCN). The summary combines the authors' research and literature reports on SLCN concerning the synthesis of single-layer polyheptazine sheets, light absorption and emission by SLCN, photochemical and photocatalytic properties of SLCN as well as examples of applications of SLCN sheets as "building blocks" in heterostructures with nanocrystalline semiconductors and metals. The Perspective is concluded with an outlook discussing the most promising directions for further studies and applications of SLCN and related composites.

6.
Materials (Basel) ; 14(13)2021 Jun 27.
Article in English | MEDLINE | ID: mdl-34199129

ABSTRACT

The synthesis of (Cu,Ag)-Zn-Sn-S (CAZTS) and Ag-Zn-Sn-S (AZTS) nanocrystals (NCs) by means of "green" chemistry in aqueous solution and their detailed characterization by Raman spectroscopy and several complementary techniques are reported. Through a systematic variation of the nominal composition and quantification of the constituent elements in CAZTS and AZTS NCs by X-ray photoemission spectroscopy (XPS), we identified the vibrational Raman and IR fingerprints of both the main AZTS phase and secondary phases of Ag-Zn-S and Ag-Sn-S compounds. The formation of the secondary phases of Ag-S and Ag-Zn-S cannot be avoided entirely for this type of synthesis. The Ag-Zn-S phase, having its bandgap in near infrared range, is the reason for the non-monotonous dependence of the absorption edge of CAZTS NCs on the Ag content, with a trend to redshift even below the bandgaps of bulk AZTS and CZTS. The work function, electron affinity, and ionization potential of the AZTS NCs are derived using photoelectron spectroscopy measurements.

7.
RSC Adv ; 11(34): 21145-21152, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-35479360

ABSTRACT

The effect of spontaneous alloying of non-stoichiometric aqueous Ag-In-S (AIS) and Cu-In-S (CIS) quantum dots (QDs) stabilized by surface glutathione (GSH) complexes was observed spectroscopically due to the phenomenon of band bowing typical for the solid-solution Cu(Ag)-In-S (CAIS) QDs. The alloying was found to occur even at room temperature and can be accelerated by a thermal treatment of colloidal mixtures at around 90 °C with no appreciable differences in the average size observed between alloyed and original individual QDs. An equilibrium between QDs and molecular and clustered metal-GSH complexes, which can serve as "building material" for the new mixed CAIS QDs, during the spontaneous alloying is assumed to be responsible for this behavior of GSH-capped ternary QDs. The alloying effect is expected to be of a general character for different In-based ternary chalcogenides.

8.
Nanomaterials (Basel) ; 10(12)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371226

ABSTRACT

The environment strongly affects both the fundamental physical properties of semiconductor nanocrystals (NCs) and their functionality. Embedding NCs in polymer matrices is an efficient way to create a desirable NC environment needed for tailoring the NC properties and protecting NCs from adverse environmental factors. Luminescent NCs in optically transparent polymers have been investigated due to their perspective applications in photonics and bio-imaging. Here, we report on the manifestations of photo-induced enhancement of photoluminescence (PL) of aqueous colloidal NCs embedded in water-soluble polymers. Based on the comparison of results obtained on bare and core/shell NCs, NCs of different compounds (CdSe, CdTe, ZnO) as well as different embedding polymers, we conclude on the most probable mechanism of the photoenhancement for these sorts of systems. Contrary to photoenhancement observed earlier as a result of surface photocorrosion, we do not observe any change in peak position and width of the excitonic PL. Therefore, we suggest that the saturation of trap states by accumulated photo-excited charges plays a key role in the observed enhancement of the radiative recombination. This suggestion is supported by the unique temperature dependence of the trap PL band as well as by power-dependent PL measurement.

9.
RSC Adv ; 10(69): 42178-42193, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-35516771

ABSTRACT

We introduce a direct aqueous synthesis of luminescent 2-3 nm Ag-In-Se (AISe) quantum dots (QDs) capped by glutathione (GSH) complexes, where sodium selenosulfate Na2SeSO3 is used as a stable Se2- precursor. A series of size-selected AISe QDs with distinctly different positions of absorption and PL bands can be separated from the original QD ensembles by using anti-solvent-induced size-selective precipitation. The AISe-GSH QDs emit broadband PL with the band maximum varying from 1.65 eV (750 nm) to 1.90 eV (650 nm) depending on the average QD size and composition. The PL quantum yield varies strongly with basic synthesis parameters (ratios of constituents, Zn addition, duration of thermal treatment, etc.) reaching 4% for "core" AISe and 12% for "core/shell" AISe/ZnS QDs. The shape and position of PL bands is interpreted in terms of the model of radiative recombination of a self-trapped exciton. The AISe-GSH QDs reveal phonon Raman spectra characteristic for small and Ag-deficient tetragonal Ag-In-Se QDs. The ability of ultra-small AISe QDs to support such "bulk-like" vibrations can be used for future deeper insights into structural and optical properties of this relatively new sort of QDs.

10.
RSC Adv ; 10(56): 34059-34087, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-35519070

ABSTRACT

We provide a critical review of the current state of the synthesis and applications of nano- and micro-tubes of layered graphitic carbon nitride. This emerging material has a huge potential for light-harvesting applications, including light sensing, artificial photosynthesis, selective photocatalysis, hydrogen storage, light-induced motion, membrane technologies, and can become a major competitor for such established materials as carbon and titania dioxide nanotubes. Graphitic carbon nitride tubes (GCNTs) combine visible-light sensitivity, high charge carrier mobility, and exceptional chemical/photochemical stability, imparting this material with unrivaled photocatalytic activities in photosynthetic processes, such as water splitting and carbon dioxide reduction. The unique geometric GCNT structure and versatility of possible chemical modifications allow new photocatalytic applications of GCNTs to be envisaged including selective photocatalysts of multi-electron processes as well as light-induced and light-directed motion of GCNT-based microswimmers. Closely-packed arrays of aligned GCNTs show great promise as multifunctional membrane materials for the light energy conversion and storage, light-driven pumping of liquids, selective adsorption, and electrochemical applications. These emerging applications require synthetic routes to GCNTs with highly controlled morphological parameters and composition to be available. We recognize three major strategies for the GCNT synthesis including templating, supramolecular assembling of precursors, and scrolling of nano-/microsheets, and outline promising routes for further progress of these approaches in the light of the most important emerging applications of GCNTs.

SELECTION OF CITATIONS
SEARCH DETAIL
...