Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38203458

ABSTRACT

Her-2/neu-targeting therapy by passive application with trastuzumab is associated with acquired resistance and subsequent metastasis development, which is attributed to the upregulation of tumoral PD-L1 expression and the downregulation of Her-2/neu. We aimed to investigate this association, following active immunization with our recently constructed B-cell peptide-based Her-2/neu vaccines in both preclinical and clinical settings. Immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), and combined positive score (CPS) were applied to evaluate Her-2/neu and PD-L1 expression using a murine syngeneic tumor model for Her-2/neu lung metastases and tumor biopsies from a gastric cancer patient with disease progression. A significant and concomitant reduction in Her-2/neu and the upregulation of PD-L1 expression was observed in vaccinated mice after 45 days, but not after 30 days, of metastases development. A significant increase in tumor-infiltrating B lymphocytes was observed at both time points. The downregulation of Her-2/neu and the upregulation of PD-L1 were observed in a patient's primary tumor at the disease progression time point but not prior to vaccination (Her-2/neu IHC: 3 to 0, FISH: 4.98 to 1.63; PD-L1 CPS: 0% to 5%). Our results further underline the need for combination therapy by targeting PD-L1 to prevent metastasis formation and immune evasion of Her-2/neu-positive and PD-L1-negative tumor cells.


Subject(s)
B7-H1 Antigen , Cancer Vaccines , Humans , Animals , Mice , Immune Evasion , In Situ Hybridization, Fluorescence , Oncogenes , Cancer Vaccines/therapeutic use , Disease Progression
2.
J Virol ; 96(15): e0198021, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35852352

ABSTRACT

Atypical porcine pestiviruses (APPV; Pestivirus K) are a recently discovered, very divergent species of the genus Pestivirus within the family Flaviviridae. The presence of APPV in piglet-producing farms is associated with the occurrence of so-called "shaking piglets," suffering from mild to severe congenital tremor type A-II. Previous studies showed that the cellular protein DNAJC14 is an essential cofactor of the NS2 autoprotease of all classical pestiviruses. Consequently, genetically engineered DNAJC14 knockout cell lines were resistant to all tested noncytopathogenic (non-cp) pestiviruses. Surprisingly, we found that the non-cp APPV can replicate in these cells in the absence of DNAJC14, suggesting a divergent mechanism of polyprotein processing. A complete laboratory system for the study of APPV was established to learn more about the replication of this unusual virus. The inactivation of the APPV NS2 autoprotease using reverse genetics resulted in nonreplicative genomes. To further investigate whether a regulation of the NS2-3 cleavage is also existing in APPV, we constructed synthetic viral genomes with deletions and duplications leading to the NS2 independent release of mature NS3. As observed with other pestiviruses, the increase of mature NS3 resulted in elevated viral RNA replication levels and increased protein expression. Our data suggest that APPV exhibit a divergent mechanism for the regulation of the NS2 autoprotease activity most likely utilizing a different cellular protein for the adjustment of replication levels. IMPORTANCE DNAJC14 is an essential cofactor of the pestiviral NS2 autoprotease, limiting replication to tolerable levels as a prerequisite for the noncytopathogenic biotype of pestiviruses. Surprisingly, we found that the atypical porcine pestivirus (APPV) is able to replicate in the absence of DNAJC14. We further investigated the NS2-3 processing of APPV using a molecular clone, monoclonal antibodies, and DNAJC14 knockout cells. We identified two potential active site residues of the NS2 autoprotease and could demonstrate that the release of NS3 by the NS2 autoprotease is essential for APPV replication. Defective interfering genomes and viral genomes with duplicated NS3 sequences that produce mature NS3 independent of the NS2 autoprotease activity showed increased replication and antigen expression. It seems likely that an alternative cellular cofactor controls NS2-3 cleavage and thus replication of APPV. The replication-optimized synthetic APPV genomes might be suitable live vaccine candidates, whose establishment and testing warrant further research.


Subject(s)
Molecular Chaperones , Pestivirus Infections , Pestivirus , Swine , Virus Replication , Animals , Cell Line , Coenzymes , Genome, Viral/genetics , Host-Pathogen Interactions , Molecular Chaperones/genetics , Pestivirus/classification , Pestivirus/enzymology , Pestivirus/growth & development , Pestivirus Infections/veterinary , RNA, Viral/genetics , Swine/virology , Swine Diseases/virology , Viral Proteases/metabolism , Virus Replication/genetics
3.
Methods Cell Biol ; 162: 389-415, 2021.
Article in English | MEDLINE | ID: mdl-33707020

ABSTRACT

In imaging, penetration depth comes at the expense of lateral resolution, which restricts the scope of 3D in-vivo imaging of small animals at micrometer resolution. Bioimaging will need to expand beyond correlative light and electron microscopy (CLEM) approaches to combine insights about in-vivo dynamics in a physiologically relevant 3D environment with ex-vivo information at micrometer resolution (or beyond) within the spatial, structural and biochemical contexts. Our report demonstrates the immense potential for biomedical discovery and diagnosis made available by bridging preclinical in-vivo imaging with ex-vivo biological microscopy to zoom in from the whole organism to individual structures and by adding localized spectroscopic information to structural and functional information. We showcase the use of two novel imaging pipelines to zoom into mural lesions (occlusions/hyperplasia and micro-calcifications) in murine vasculature in a truly correlative manner, that is using exactly the same animal for all integrated imaging modalities. This correlated multimodality imaging (CMI) approach includes well-established technologies such as Positron Emission Tomography (microPET), Autoradiography, Magnetic Resonance Imaging (microMRI) and Computed Tomography (microCT), and imaging approaches that are more novel in the biomedical setting, such as X-Ray Fluorescence Spectroscopy (microXRF) and High Resolution Episcopic Microscopy (HREM). Although the current pipelines are focused on mural lesions, they would also be beneficial in preclinical and clinical investigations of vascular diseases in general.


Subject(s)
Microscopy, Electron , Animals , Mice , Microscopy, Fluorescence , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...