Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Opt ; 13(6): 064032, 2008.
Article in English | MEDLINE | ID: mdl-19123678

ABSTRACT

We develop a method of coherent phase microscopy (CPM) for direct visualization of nonfixed, nonstained mammalian cells (both cultured cells and freshly isolated tumor biopsies) followed by computer-assisted data analysis. The major purpose of CPM is to evaluate the refractive properties of optically dense intracellular structures such as the nucleus and the nucleoli. In particular, we focus on quantitative real-time analysis of the nucleolar dynamics using phase thickness as an equivalent of optical path difference for optically nonhomogenous biological objects. Pharmacological inhibition of gene transcription leads to a dramatic decrease of the phase thickness of the nucleoli within the initial minutes of cell exposure. Furthermore, the acute depletion of intracellular ATP pool, depolymerization of microtubules and inhibition of DNA replication resulted in a rapid decrease of the nucleolar phase thickness. These optical effects were paralleled by segregation of nucleolar components as documented by electron microscopy. Thus, CPM detects early changes of nucleolar dynamics, in particular, the nucleolar segregation as part of general cellular response to cytotoxic stress, regardless of whether the nucleolus is or is not the primary target of the toxin. CPM is applicable for monitoring and quantitative analysis of the "nucleolar stress" in living mammalian cells.


Subject(s)
Algorithms , Cell Nucleus/physiology , Cell Nucleus/ultrastructure , Image Interpretation, Computer-Assisted/methods , Microscopy, Phase-Contrast/methods , Oxidative Stress , Tomography, Optical Coherence/methods , Cell Line , Computer Systems , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity
2.
J Gene Med ; 6(7): 798-808, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15241787

ABSTRACT

BACKGROUND: Recent studies indicate that the innate component of immune defense plays an important role in the establishment of antigen-specific immune response. We have previously isolated a novel mouse gene tag7/PGRP that was shown to be involved in the innate component of the immune system, and its insect homologue is an upstream mediator of Toll signaling in Drosophila. METHODS: Transiently or stably genetically modified mouse tumor cell lines expressing Tag7 were used. Tumor growth rate and animal survival were analyzed. Possible effector cells involved in tumor suppression were detected immunohistochemically. RESULTS: Transfection of mammary gland adenocarcinoma cells with the tag7 cDNA did not alter their growth rate in vitro but diminished their tumorogenicity in vivo in syngeneic and immunodeficient animals. Increased incidence of apoptosis was registered in the modified tumors. Transient expression of Tag7 by mouse melanoma M3 cells elicited protective immunity against parental tumor cells. Immunohistochemical analysis revealed that tumors after immunization with the genetically modified cells were infiltrated with Mac1(+) cells, B220(+) cells, and NK cells. Using nude mice we observed rejection of modified cells, but did not detect memory formation. CONCLUSIONS: We can conclude that secretion of the Tag7 protein by genetically modified cells can induce mobilization of antigen-presenting cells and innate effectors. Memory mechanisms are mediated by T cell response. For the first time our results demonstrate that local secretion of Tag7-the molecule involved in innate immunity-may play an important role in the induction of effective antitumor response in mice.


Subject(s)
Cytokines/metabolism , Immunotherapy , Animals , Apoptosis , Cell Line, Tumor , Cytokines/genetics , Cytokines/immunology , Immunity, Innate , Immunohistochemistry , Mice , Species Specificity , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...