Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Eur Phys J C Part Fields ; 84(6): 579, 2024.
Article in English | MEDLINE | ID: mdl-38854404

ABSTRACT

Being able to decorrelate a feature space from protected attributes is an area of active research and study in ethics, fairness, and also natural sciences. We introduce a novel decorrelation method using Convex Neural Optimal Transport Solvers (Cnots) that is able to decorrelate a continuous feature space against protected attributes with optimal transport. We demonstrate how well it performs in the context of jet classification in high energy physics, where classifier scores are desired to be decorrelated from the mass of a jet. The decorrelation achieved in binary classification approaches the levels achieved by the state-of-the-art using conditional normalising flows. When moving to multiclass outputs the optimal transport approach performs significantly better than the state-of-the-art, suggesting substantial gains at decorrelating multidimensional feature spaces.

3.
Eur Phys J C Part Fields ; 84(3): 241, 2024.
Article in English | MEDLINE | ID: mdl-38463614

ABSTRACT

Machine learning-based anomaly detection (AD) methods are promising tools for extending the coverage of searches for physics beyond the Standard Model (BSM). One class of AD methods that has received significant attention is resonant anomaly detection, where the BSM physics is assumed to be localized in at least one known variable. While there have been many methods proposed to identify such a BSM signal that make use of simulated or detected data in different ways, there has not yet been a study of the methods' complementarity. To this end, we address two questions. First, in the absence of any signal, do different methods pick the same events as signal-like? If not, then we can significantly reduce the false-positive rate by comparing different methods on the same dataset. Second, if there is a signal, are different methods fully correlated? Even if their maximum performance is the same, since we do not know how much signal is present, it may be beneficial to combine approaches. Using the Large Hadron Collider (LHC) Olympics dataset, we provide quantitative answers to these questions. We find that there are significant gains possible by combining multiple methods, which will strengthen the search program at the LHC and beyond.

4.
Front Big Data ; 6: 899345, 2023.
Article in English | MEDLINE | ID: mdl-37025653

ABSTRACT

We propose a new model independent technique for constructing background data templates for use in searches for new physics processes at the LHC. This method, called Curtains, uses invertible neural networks to parameterise the distribution of side band data as a function of the resonant observable. The network learns a transformation to map any data point from its value of the resonant observable to another chosen value. Using Curtains, a template for the background data in the signal window is constructed by mapping the data from the side-bands into the signal region. We perform anomaly detection using the Curtains background template to enhance the sensitivity to new physics in a bump hunt. We demonstrate its performance in a sliding window search across a wide range of mass values. Using the LHC Olympics dataset, we demonstrate that Curtains matches the performance of other leading approaches which aim to improve the sensitivity of bump hunts, can be trained on a much smaller range of the invariant mass, and is fully data driven.

SELECTION OF CITATIONS
SEARCH DETAIL
...