Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Res Ther ; 16(1): 123, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849926

ABSTRACT

BACKGROUND: Recent reports suggest that amyloid beta (Aß) peptides can exhibit prion-like pathogenic properties. Transmission of Aß peptide and the development of associated pathologies after surgeries with contaminated instruments and intravenous or intracerebral inoculations have now been reported across fish, rodents, primates, and humans. This raises a worrying prospect of Aß peptides also having other characteristics typical of prions, such as evasion of the digestive process. We asked if such transmission of Aß aggregates via ingestion was possible. METHODS: We made use of a transgenic Drosophila melanogaster line expressing human Aß peptide prone to aggregation. Fly larvae were fed to adult zebrafish under two feeding schemes. The first was a short-term, high-intensity scheme over 48 h to determine transmission and retention in the gut. The second, long-term scheme specifically examined retention and accumulation in the brain. The gut and brain tissues were examined by histology, western blotting, and mass spectrometric analyses. RESULTS: None of the analyses could detect Aß aggregates in the guts of zebrafish following ingestion, despite being easily detectable in the feed. Additionally, there was no detectable accumulation of Aß in the brain tissue or development of associated pathologies after prolonged feeding. CONCLUSIONS: While human Aß aggregates do not appear to be readily transmissible by ingestion across species, two prospects remain open. First, this mode of transmission, if occurring, may stay below a detectable threshold and may take much longer to manifest. A second possibility is that the human Aß peptide is not able to trigger self-propagation or aggregation in other species. Either possibility requires further investigation, taking into account the possibility of such transmission from agricultural species used in the food industry.


Subject(s)
Amyloid beta-Peptides , Animals, Genetically Modified , Brain , Drosophila melanogaster , Zebrafish , Animals , Amyloid beta-Peptides/metabolism , Brain/metabolism , Humans , Eating/physiology , Larva , Protein Aggregates
SELECTION OF CITATIONS
SEARCH DETAIL
...