Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
1.
Zool Res ; 45(4): 877-909, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39004865

ABSTRACT

The tree shrew ( Tupaia belangeri) has long been proposed as a suitable alternative to non-human primates (NHPs) in biomedical and laboratory research due to its close evolutionary relationship with primates. In recent years, significant advances have facilitated tree shrew studies, including the determination of the tree shrew genome, genetic manipulation using spermatogonial stem cells, viral vector-mediated gene delivery, and mapping of the tree shrew brain atlas. However, the limited availability of tree shrews globally remains a substantial challenge in the field. Additionally, determining the key questions best answered using tree shrews constitutes another difficulty. Tree shrew models have historically been used to study hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, myopia, and psychosocial stress-induced depression, with more recent studies focusing on developing animal models for infectious and neurodegenerative diseases. Despite these efforts, the impact of tree shrew models has not yet matched that of rodent or NHP models in biomedical research. This review summarizes the prominent advancements in tree shrew research and reflects on the key biological questions addressed using this model. We emphasize that intensive dedication and robust international collaboration are essential for achieving breakthroughs in tree shrew studies. The use of tree shrews as a unique resource is expected to gain considerable attention with the application of advanced techniques and the development of viable animal models, meeting the increasing demands of life science and biomedical research.


Subject(s)
Biomedical Research , Animals , Biomedical Research/trends , Tupaiidae , Disease Models, Animal , Tupaia , Models, Animal
2.
Elife ; 122023 10 04.
Article in English | MEDLINE | ID: mdl-37791662

ABSTRACT

The lateral geniculate nucleus (LGN), a retinotopic relay center where visual inputs from the retina are processed and relayed to the visual cortex, has been proposed as a potential target for artificial vision. At present, it is unknown whether optogenetic LGN stimulation is sufficient to elicit behaviorally relevant percepts, and the properties of LGN neural responses relevant for artificial vision have not been thoroughly characterized. Here, we demonstrate that tree shrews pretrained on a visual detection task can detect optogenetic LGN activation using an AAV2-CamKIIα-ChR2 construct and readily generalize from visual to optogenetic detection. Simultaneous recordings of LGN spiking activity and primary visual cortex (V1) local field potentials (LFPs) during optogenetic LGN stimulation show that LGN neurons reliably follow optogenetic stimulation at frequencies up to 60 Hz and uncovered a striking phase locking between the V1 LFP and the evoked spiking activity in LGN. These phase relationships were maintained over a broad range of LGN stimulation frequencies, up to 80 Hz, with spike field coherence values favoring higher frequencies, indicating the ability to relay temporally precise information to V1 using light activation of the LGN. Finally, V1 LFP responses showed sensitivity values to LGN optogenetic activation that were similar to the animal's behavioral performance. Taken together, our findings confirm the LGN as a potential target for visual prosthetics in a highly visual mammal closely related to primates.


Subject(s)
Optogenetics , Thalamus , Animals , Thalamus/physiology , Geniculate Bodies/physiology , Vision, Ocular , Neurons/physiology , Photic Stimulation , Visual Pathways/physiology , Mammals
3.
Clocks Sleep ; 5(2): 204-225, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37092429

ABSTRACT

The sleep-wake cycle is a highly regulated behavior in which a circadian clock times sleep and waking, whereas a homeostatic process controls sleep need. Both the clock and the sleep homeostat interact, but to what extent they influence each other is not understood. There is evidence that clock genes, in particular Period2 (Per2), might be implicated in the sleep homeostatic process. Sleep regulation depends also on the proper functioning of neurons and astroglial cells, two cell-types in the brain that are metabolically dependent on each other. In order to investigate clock-driven contributions to sleep regulation we non-invasively measured sleep of mice that lack the Per2 gene either in astroglia, neurons, or all body cells. We observed that mice lacking Per2 in all body cells (Per2Brdm and TPer2 animals) display earlier onset of sleep after sleep deprivation (SD), whereas neuronal and astroglial Per2 knock-out animals (NPer2 and GPer2, respectively) were normal in that respect. It appears that systemic (whole body) Per2 expression is important for physiological sleep architecture expressed by number and length of sleep bouts, whereas neuronal and astroglial Per2 weakly impacts night-time sleep amount. Our results suggest that Per2 contributes to the timing of the regulatory homeostatic sleep response by delaying sleep onset after SD and attenuating the early night rebound response.

4.
Nat Commun ; 13(1): 4685, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35948564

ABSTRACT

The protein kinase mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth and proliferation, supporting anabolic reactions and inhibiting catabolic pathways like autophagy. Its hyperactivation is a frequent event in cancer promoting tumor cell proliferation. Several intracellular membrane-associated mTORC1 pools have been identified, linking its function to distinct subcellular localizations. Here, we characterize the N-terminal kinase-like protein SCYL1 as a Golgi-localized target through which mTORC1 controls organelle distribution and extracellular vesicle secretion in breast cancer cells. Under growth conditions, SCYL1 is phosphorylated by mTORC1 on Ser754, supporting Golgi localization. Upon mTORC1 inhibition, Ser754 dephosphorylation leads to SCYL1 displacement to endosomes. Peripheral, dephosphorylated SCYL1 causes Golgi enlargement, redistribution of early and late endosomes and increased extracellular vesicle release. Thus, the mTORC1-controlled phosphorylation status of SCYL1 is an important determinant regulating subcellular distribution and function of endolysosomal compartments. It may also explain the pathophysiology underlying human genetic diseases such as CALFAN syndrome, which is caused by loss-of-function of SCYL1.


Subject(s)
Golgi Apparatus , Lysosomes , Adaptor Proteins, Vesicular Transport/metabolism , DNA-Binding Proteins/metabolism , Golgi Apparatus/metabolism , Humans , Intracellular Membranes/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Phosphorylation
5.
Redox Biol ; 51: 102233, 2022 05.
Article in English | MEDLINE | ID: mdl-35042677

ABSTRACT

Using a novel rat model of Down syndrome (DS), the functional role of the cystathionine-ß-synthase (CBS)/hydrogen sulfide (H2S) pathway was investigated on the pathogenesis of brain wave pattern alterations and neurobehavioral dysfunction. Increased expression of CBS and subsequent overproduction of H2S was observed in the brain of DS rats, with CBS primarily localizing to astrocytes and the vasculature. DS rats exhibited neurobehavioral defects, accompanied by a loss of gamma brain wave activity and a suppression of the expression of multiple pre- and postsynaptic proteins. Aminooxyacetate, a prototypical pharmacological inhibitor of CBS, increased the ability of the DS brain tissue to generate ATP in vitro and reversed the electrophysiological and neurobehavioral alterations in vivo. Thus, the CBS/H2S pathway contributes to the pathogenesis of neurological dysfunction in DS, most likely through dysregulation of cellular bioenergetics and gene expression.


Subject(s)
Brain Waves , Down Syndrome , Hydrogen Sulfide , Animals , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Energy Metabolism , Hydrogen Sulfide/metabolism , Rats
6.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34462351

ABSTRACT

Daily life requires transitions between performance of well-practiced, automatized behaviors reliant upon internalized representations and behaviors requiring external focus. Such transitions involve differential activation of the default mode network (DMN), a group of brain areas associated with inward focus. We asked how optogenetic modulation of the ventral pallidum (VP), a subcortical DMN node, impacts task switching between internally to externally guided lever-pressing behavior in the rat. Excitation of the VP dramatically compromised acquisition of an auditory discrimination task, trapping animals in a DMN state of automatized internally focused behavior and impairing their ability to direct attention to external sensory stimuli. VP inhibition, on the other hand, facilitated task acquisition, expediting escape from the DMN brain state, thereby allowing rats to incorporate the contingency changes associated with the auditory stimuli. We suggest that VP, instant by instant, regulates the DMN and plays a deterministic role in transitions between internally and externally guided behaviors.


Subject(s)
Automatism , Basal Forebrain/physiology , Behavior, Animal , Default Mode Network , Animals , Learning , Male , Nerve Net/physiology , Optogenetics , Rats , Rats, Long-Evans
7.
Commun Biol ; 4(1): 722, 2021 06 11.
Article in English | MEDLINE | ID: mdl-34117351

ABSTRACT

Understanding human sleep requires appropriate animal models. Sleep has been extensively studied in rodents, although rodent sleep differs substantially from human sleep. Here we investigate sleep in tree shrews, small diurnal mammals phylogenetically close to primates, and compare it to sleep in rats and humans using electrophysiological recordings from frontal cortex of each species. Tree shrews exhibited consolidated sleep, with a sleep bout duration parameter, τ, uncharacteristically high for a small mammal, and differing substantially from the sleep of rodents that is often punctuated by wakefulness. Two NREM sleep stages were observed in tree shrews: NREM, characterized by high delta waves and spindles, and an intermediate stage (IS-NREM) occurring on NREM to REM transitions and consisting of intermediate delta waves with concomitant theta-alpha activity. While IS-NREM activity was reliable in tree shrews, we could also detect it in human EEG data, on a subset of transitions. Finally, coupling events between sleep spindles and slow waves clustered near the beginning of the sleep period in tree shrews, paralleling humans, whereas they were more evenly distributed in rats. Our results suggest considerable homology of sleep structure between humans and tree shrews despite the large difference in body mass between these species.


Subject(s)
Sleep/physiology , Tupaiidae/physiology , Animals , Electroencephalography , Female , Frontal Lobe/physiology , Humans , Male , Rats , Rats, Long-Evans/physiology , Sleep Stages/physiology , Sleep, REM/physiology , Young Adult
8.
Cell Rep ; 33(6): 108359, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33176133

ABSTRACT

Activation of the basal forebrain (BF) has been associated with increased attention, arousal, and a heightened cortical representation of the external world. In addition, BF has been implicated in the regulation of the default mode network (DMN) and associated behaviors. Here, we provide causal evidence for a role of BF in DMN regulation, highlighting a prominent role of parvalbumin (PV) GABAergic neurons. The optogenetic activation of BF PV neurons reliably drives animals toward DMN-like behaviors, with no effect on memory encoding. In contrast, BF electrical stimulation enhances memory performance and increases DMN-like behaviors. BF stimulation has a correlated impact on peptide regulation in the BF and ACC, enhancing peptides linked to grooming behavior and memory functions, supporting a crucial role of the BF in DMN regulation. We suggest that in addition to enhancing attentional functions, the BF harbors a network encompassing PV GABAergic neurons that promotes self-directed behaviors associated with the DMN.


Subject(s)
Basal Forebrain/metabolism , Default Mode Network/physiopathology , Optogenetics/methods , Parvalbumins/metabolism , Animals , Disease Models, Animal , Rats
9.
Proteomics Clin Appl ; 14(5): e1900117, 2020 09.
Article in English | MEDLINE | ID: mdl-32538547

ABSTRACT

PURPOSE: Alpha-synuclein (α-syn) dopaminylation can lead to the death of dopaminergic neurons in the brain and is a risk factor of Parkinson's disease (PD). This study aims to examine whether such a posttranslational modification (PTM) is presented in human blood plasma. EXPERIMENTAL DESIGN: In vitro reaction simulation between α-syn and dopamine (DA) is conducted to study the biochemical mechanism. Then α-syn from human blood plasma samples is detected by using immunoprecipitation-mass spectrometry (IP-MS). Lastly the levels of endogenous α-syn and α-syn dopaminylation in 88 blood plasma samples from patients with PD, major depressive disorder (MDD), and healthy control (HC) are compared. RESULTS: DA modifies α-syn with the addition of dopamine-quinone (DAQ) into lysine sites of α-syn in vitro and the addition of DAQ and 3,4-dihydroxyphenylacetaldehyde (DOPAL) in plasma samples. The unmodified α-syn between the PD and HC groups showed similar levels. The levels of two peptides, one with lysine 34 (34 K) DAQ modification and the other with lysine 23 (23 K) ubiquitination, are significantly higher in PD and MDD compared with HC. CONCLUSIONS AND CLINICAL RELEVANCE: Thus, α-syn dopaminylation is measurable and might be used to indicatethe presence and progression of neurological disorders.


Subject(s)
Dopamine/metabolism , Parkinson Disease/blood , alpha-Synuclein/blood , Aged , Case-Control Studies , Female , Humans , Male , Parkinson Disease/metabolism , Risk Factors , alpha-Synuclein/metabolism
10.
J Pharm Biomed Anal ; 173: 62-67, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31121455

ABSTRACT

Measurement of peptides such as oxytocin in plasma is a critical challenge in clinical research because of their extreme low concentrations as well as the tremendous interferencing substances co-presented in plasma. In this study, we developed an efficient salt-out assisted liquid-liquid extraction (SALLE) to treat plasma, and then analyzed the samples using nano-LC-MS to quantify intact oxytocin (OT) in human and rat plasmas. Our results showed that the use of SALLE (Isopropanol/K2HPO4 (4 M)) allows efficient removal of various disrupters, including proteins, inorganic salts, and lipids, which helps avoid the risk of blocked capillary columns and matrix effects. Moreover, instant SALLE can reduce the possible binding between OT and proteins, thus allowing high repeatability of OT extraction from the original plasma. This combination of SALLE and nano-LC-MS method provided in the end a 1 pg/m L of detection limit. Comparative analysis showed that the concentration of OT in the plasma taken from 12 volunteers ranged from 3 to 214 pg/m L, about one order less than those in the plasma of rats. Compared to the previously reported LC-MS and immunoassay methods, the combination of SALLE and nano-LC-MS permits reliable measurement of intact OT even in human plasma. Our approach may be an alternative method for quantitative determination of other ultra-trace peptides in plasma, which would help the investigators understand the role of peptides in behaviours and diseases.


Subject(s)
Liquid-Liquid Extraction/methods , Oxytocin/blood , 2-Propanol/chemistry , Animals , Chromatography, Liquid/methods , Female , Healthy Volunteers , Humans , Limit of Detection , Male , Oxytocin/isolation & purification , Phosphates/chemistry , Potassium Compounds/chemistry , Rats , Tandem Mass Spectrometry/methods
11.
eNeuro ; 5(4)2018.
Article in English | MEDLINE | ID: mdl-30073190

ABSTRACT

Our understanding of the neurobiological underpinnings of learning and behavior relies on the use of invasive techniques, which necessitate the use of animal models. However, when different species learn the same task, to what degree are they actually producing the same behavior and engaging homologous neural circuitry? This question has received virtually no recent attention, even as the most powerful new methodologies for measuring and perturbing the nervous system have become increasingly dependent on the use of murine species. Here, we test humans, rats, monkeys, and an evolutionarily intermediate species, tree shrews, on a three alternative, forced choice, visual contrast discrimination task. As anticipated, learning rate, peak performance, and transfer across contrasts was lower in the rat compared to the other species. More interestingly, rats exhibited two major behavioral peculiarities: while monkeys and tree shrews based their choices largely on visual information, rats tended to base their choices on past reward history. Furthermore, as the task became more difficult, rats largely disengaged from the visual stimulus, reverting to innate spatial predispositions in order to collect rewards near chance probability. Our findings highlight the limitation of muridae as models for translational research, at least in the area of visually based decision making.


Subject(s)
Behavior, Animal/physiology , Conditioning, Operant/physiology , Problem Solving/physiology , Transfer, Psychology/physiology , Visual Perception/physiology , Animals , Female , Humans , Macaca fascicularis , Male , Rats , Rats, Long-Evans , Reward , Species Specificity , Tupaiidae
12.
Cell Rep ; 23(8): 2405-2415, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29791851

ABSTRACT

Despite well-known privileged perception of dark over light stimuli, it is unknown to what extent this dark dominance is maintained when visual transients occur in rapid succession, for example, during perception of moving stimuli. Here, we address this question using dark and light transients presented at different flicker frequencies. Although both human participants and tree shrews exhibited dark dominance for temporally modulated transients, these occurred at different flicker frequencies, namely, at 11 Hz in humans and 40 Hz and higher in tree shrews. Tree shrew V1 neuronal activity confirmed that differences between light and dark flicker were maximal at 40 Hz, corresponding closely to behavioral findings. These findings suggest large differences in flicker perception between humans and tree shrews, which may be related to the lifestyle of these species. A specialization for detecting dark transients at high temporal frequencies may thus be adaptive for tree shrews, which are particularly fast-moving small mammals.


Subject(s)
Darkness , Tupaiidae/physiology , Visual Perception/physiology , Action Potentials/physiology , Adult , Animals , Contrast Sensitivity , Female , Humans , Male , Neurons/physiology , Photic Stimulation , Reaction Time , Time Factors
13.
Proteomics ; 18(7): e1700408, 2018 04.
Article in English | MEDLINE | ID: mdl-29406625

ABSTRACT

Adverse life experiences increase the lifetime risk to several stress-related psychopathologies, such as anxiety or depressive-like symptoms following stress in adulthood. However, the neurochemical modulations triggered by stress have not been fully characterized. Neuropeptides play an important role as signaling molecules that contribute to physiological regulation and have been linked to neurological and psychiatric diseases. However, little is known about the influence of stress on neuropeptide regulation in the brain. Here, we have performed an exploratory study of how neuropeptide expression at adulthood is modulated by experiencing a period of multiple stressful experiences. We have targeted hippocampus and prefrontal cortex (PFC) brain areas, which have previously been shown to be modulated by stressors, employing a targeted liquid chromatography-mass spectrometry (LC-MS) based approach that permits broad peptide coverage with high sensitivity. We found that in the hippocampus, Met-enkephalin, Met-enkephalin-Arg-Phe, and Met-enkephalin-Arg-Gly-Leu were upregulated, while Leu-enkephalin and Little SAAS were downregulated after stress. In the PFC area, Met-enkephalin-Arg-Phe, Met-enkephalin-Arg-Gly-Leu, peptide PHI-27, somatostatin-28 (AA1-12), and Little SAAS were all downregulated. This systematic evaluation of neuropeptide alterations in the hippocampus and PFC suggests that stressors impact neuropeptides and that neuropeptide regulation is brain-area specific. These findings suggest several potential peptide candidates, which warrant further investigations in terms of correlation with depression-associated behaviors.


Subject(s)
Gene Expression Regulation , Hippocampus/metabolism , Neuropeptides/genetics , Prefrontal Cortex/metabolism , Stress, Psychological/metabolism , Animals , Chromatography, Liquid , Enkephalin, Methionine/genetics , Hippocampus/physiology , Male , Mass Spectrometry , Prefrontal Cortex/physiology , Proteomics , Rats , Somatostatin-28/genetics , Stress, Psychological/genetics
14.
Neuropharmacology ; 133: 75-84, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29355640

ABSTRACT

Despite evidence from psychiatry and psychology clinics pointing to altered cognition and decision making following the consumption of cannabis, the effects of cannabis derivatives are still under dispute and the mechanisms of cannabinoid effects on cognition are not known. In this study, we used effort-based and delay-based decision tasks and showed that ACEA, a potent cannabinoid agonist induced apathetic and impulsive patterns of choice in rats in a dose-dependent manner when locally injected into the anterior cingulate cortex (ACC) and orbitofrontal cortex (OFC), respectively. Pre-treatment with AM251, a selective cannabinoid type 1 (CB1) receptor antagonist, reversed ACEA-induced impulsive and apathetic patterns of choice in doses higher than a minimally effective dose. Unlike CB1 receptor antagonist, pretreatment with capsazepine, a transient receptor potential vanilloid type 1 (TRPV1) channel antagonist, was effective only at an intermediary dose. Furthermore, capsazepine per se induced impulsivity and apathy at a high dose suggesting a basal tonic activation of TRPV1 channels that exist in the ACC and OFC to support cost-benefit decision making and to help avoid apathetic and impulsive patterns of decision making. Taken together, unlike previous reports supporting opposing roles for the CB1 receptors and TRPV1 channels in anxiety and panic behavior, our findings demonstrate a different sort of interaction between endocannabinoid and endovanilloid systems and suggest that both systems contribute to the cognitive disrupting effects of cannabinoids. Given prevalent occurrence of apathy and particularly impulsivity in psychiatric disorders, these results have significant implications for pharmacotherapy research targeting these receptors.


Subject(s)
Cannabinoids/pharmacology , Choice Behavior/drug effects , Impulsive Behavior/drug effects , Receptor, Cannabinoid, CB1/metabolism , TRPV Cation Channels/metabolism , Animals , Cannabinoid Receptor Modulators/pharmacology , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Cerebral Cortex/drug effects , Cerebral Cortex/physiology , Dose-Response Relationship, Drug , Male , Maze Learning/drug effects , Piperidines/pharmacology , Pyrazoles/pharmacology , Rats , Rats, Wistar , TRPV Cation Channels/agonists , TRPV Cation Channels/antagonists & inhibitors
15.
Proc Natl Acad Sci U S A ; 115(6): 1352-1357, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29363595

ABSTRACT

The default mode network (DMN) is a collection of cortical brain regions that is active during states of rest or quiet wakefulness in humans and other mammalian species. A pertinent characteristic of the DMN is a suppression of local field potential gamma activity during cognitive task performance as well as during engagement with external sensory stimuli. Conversely, gamma activity is elevated in the DMN during rest. Here, we document that the rat basal forebrain (BF) exhibits the same pattern of responses, namely pronounced gamma oscillations during quiet wakefulness in the home cage and suppression of this activity during active exploration of an unfamiliar environment. We show that gamma oscillations are localized to the BF and that gamma-band activity in the BF has a directional influence on a hub of the rat DMN, the anterior cingulate cortex, during DMN-dominated brain states. The BF is well known as an ascending, activating, neuromodulatory system involved in wake-sleep regulation, memory formation, and regulation of sensory information processing. Our findings suggest a hitherto undocumented role of the BF as a subcortical node of the DMN, which we speculate may be important for switching between internally and externally directed brain states. We discuss potential BF projection circuits that could underlie its role in DMN regulation and highlight that certain BF nuclei may provide potential target regions for up- or down-regulation of DMN activity that might prove useful for treatment of DMN dysfunction in conditions such as epilepsy or major depressive disorder.


Subject(s)
Basal Forebrain/physiology , Exploratory Behavior/physiology , Animals , Behavior, Animal , Gyrus Cinguli/physiology , Locomotion , Male , Nerve Net , Rats, Long-Evans , Task Performance and Analysis , Wakefulness
16.
Glia ; 66(3): 477-491, 2018 03.
Article in English | MEDLINE | ID: mdl-29120073

ABSTRACT

Astrocytes play an important role in glutamatergic neurotransmission, namely by clearing synaptic glutamate and converting it into glutamine that is transferred back to neurons. The rate of this glutamate-glutamine cycle (VNT ) has been proposed to couple to that of glucose utilization and of neuronal tricarboxylic acid (TCA) cycle. In this study, we tested the hypothesis that glutamatergic neurotransmission is also coupled to the TCA cycle rate in astrocytes. For that we investigated energy metabolism by means of magnetic resonance spectroscopy (MRS) in the primary visual cortex of tree shrews (Tupaia belangeri) under light isoflurane anesthesia at rest and during continuous visual stimulation. After identifying the activated cortical volume by blood oxygenation level-dependent functional magnetic resonance imaging, 1 H MRS was performed to measure stimulation-induced variations in metabolite concentrations. Relative to baseline, stimulation of cortical activity for 20 min caused a reduction of glucose concentration by -0.34 ± 0.09 µmol/g (p < 0.001), as well as a -9% ± 1% decrease of the ratio of phosphocreatine-to-creatine (p < 0.05). Then 13 C MRS during [1,6-13 C]glucose infusion was employed to measure fluxes of energy metabolism. Stimulation of glutamatergic activity, as indicated by a 20% increase of VNT , resulted in increased TCA cycle rates in neurons by 12% ( VTCAn, p < 0.001) and in astrocytes by 24% ( VTCAg, p = 0.007). We further observed linear relationships between VNT and both VTCAn and VTCAg. Altogether, these results suggest that in the tree shrew primary visual cortex glutamatergic neurotransmission is linked to overall glucose oxidation and to mitochondrial metabolism in both neurons and astrocytes.


Subject(s)
Astrocytes/metabolism , Glutamic Acid/metabolism , Glutamine/metabolism , Neurons/metabolism , Visual Cortex/metabolism , Animals , Brain Mapping , Carbon-13 Magnetic Resonance Spectroscopy , Citric Acid Cycle/physiology , Female , Glucose/metabolism , Magnetic Resonance Imaging , Male , Mitochondria/metabolism , Oxidation-Reduction , Oxygen/metabolism , Proton Magnetic Resonance Spectroscopy , Random Allocation , Tupaiidae , Visual Cortex/diagnostic imaging , Visual Perception/physiology
17.
Brain Struct Funct ; 222(9): 4239-4252, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28660418

ABSTRACT

Brain state has profound effects on neural processing and stimulus encoding in sensory cortices. While the synchronized state is dominated by low-frequency local field potential (LFP) activity, low-frequency LFP power is suppressed in the desynchronized state, where a concurrent enhancement in gamma power is observed. Recently, it has been shown that cortical desynchronization co-occurs with enhanced between-trial reliability of spiking activity in sensory neurons, but it is currently unclear whether this effect is also evident in LFP signals. Here, we address this question by recording both spike trains and LFP in primary visual cortex during natural movie stimulation, and using isoflurane anesthesia and basal forebrain (BF) electrical activation as proxies for synchronized and desynchronized brain states. We show that indeed, low-frequency LFP modulations ("LFP events") also occur more reliably following BF activation. Interestingly, while being more reliable, these LFP events are smaller in amplitude compared to those generated in the synchronized brain state. We further demonstrate that differences in reliability of spiking activity between cortical states can be linked to amplitude and probability of LFP events. The correlated temporal dynamics between low-frequency LFP and spiking response reliability in visual cortex suggests that these effects may both be the result of the same neural circuit activation triggered by BF stimulation, which facilitates switching between processing of incoming sensory information in the desynchronized and reverberation of internal signals in the synchronized state.


Subject(s)
Action Potentials/physiology , Basal Forebrain/physiology , Evoked Potentials, Visual/physiology , Sensory Receptor Cells/physiology , Tupaiidae/physiology , Visual Cortex/physiology , Animals , Electroencephalography , Photic Stimulation , Visual Pathways/physiology , Visual Perception
18.
Proteomics ; 17(12)2017 Jun.
Article in English | MEDLINE | ID: mdl-28513109

ABSTRACT

Microproteins and endogenous peptides in the brain contain important substances that have critical roles in diverse biological processes, contributing to signal transduction and intercellular signaling. However, variability in their physical or chemical characteristics, such as molecule size, hydrophobicity, and charge states, complicate the simultaneous analysis of these compounds, although this would be highly beneficial for the field of neuroscience research. Here, we present a top-down analytical method for simultaneous analysis of microproteins and endogenous peptides using high-resolution nanocapillary LC-MS/MS. This method is detergent-free and digestion-free, which allows for extracting and preserving intact microproteins and peptides for direct LC-MS analysis. Both higher energy collision dissociation and electron-transfer dissociation fragmentations were used in the LC-MS analysis to increase the identification rate, and bioinformatics tools ProteinGoggle and PEAKS Studio software were utilized for database search. In total, we identified 471 microproteins containing 736 proteoforms, including brain-derived neurotrophic factor and a number of fibroblast growth factors. In addition, we identified 599 peptides containing 151 known or potential neuropeptides such as somatostatin-28 and neuropeptide Y. Our approach bridges the gap for the characterization of brain microproteins and peptides, which permits quantification of a diversity of signaling molecules for biomarker discovery or therapy diagnosis in the future.


Subject(s)
Brain Chemistry , Chromatography, Liquid/methods , Nanotechnology/methods , Proteins/analysis , Tandem Mass Spectrometry/methods , Animals , Brain/metabolism , Computational Biology/methods , Mice , Neuropeptides/isolation & purification , Neuropeptides/metabolism , Proteins/metabolism , Proteome/analysis , Proteomics/methods
19.
J Physiol Paris ; 110(1-2): 19-28, 2016 09.
Article in English | MEDLINE | ID: mdl-27913167

ABSTRACT

The basal forebrain (BF) is an important regulator of cortical excitability and responsivity to sensory stimuli, and plays a major role in wake-sleep regulation. While the impact of BF on cortical EEG or LFP signals has been extensively documented, surprisingly little is known about LFP activity within BF. Based on bilateral recordings from rats in their home cage, we describe endogenous LFP oscillations in the BF during quiet wakefulness, rapid eye movement (REM) and slow wave sleep (SWS) states. Using coherence and Granger causality methods, we characterize directional influences between BF and visual cortex (VC) during each of these states. We observed pronounced BF gamma activity particularly during wakefulness, as well as to a lesser extent during SWS and REM. During wakefulness, this BF gamma activity exerted a directional influence on VC that was associated with cortical excitation. During SWS but not REM, there was also a robust directional gamma band influence of BF on VC. In all three states, directional influence in the gamma band was only present in BF to VC direction and tended to be regulated specifically within each brain hemisphere. Locality of gamma band LFPs to the BF was confirmed by demonstration of phase locking of local spiking activity to the gamma cycle. We report novel aspects of endogenous BF LFP oscillations and their relationship to cortical LFP signals during sleep and wakefulness. We link our findings to known aspects of GABAergic BF networks that likely underlie gamma band LFP activations, and show that the Granger causality analyses can faithfully recapitulate many known attributes of these networks.


Subject(s)
Basal Forebrain/physiology , Sleep/physiology , Visual Cortex/physiology , Wakefulness/physiology , Animals , Electroencephalography , Rats
20.
J Neurophysiol ; 116(2): 724-41, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27226454

ABSTRACT

Decision making is an adaptive behavior that takes into account several internal and external input variables and leads to the choice of a course of action over other available and often competing alternatives. While it has been studied in diverse fields ranging from mathematics, economics, ecology, and ethology to psychology and neuroscience, recent cross talk among perspectives from different fields has yielded novel descriptions of decision processes. Reinforcement-guided decision making models are based on economic and reinforcement learning theories, and their focus is on the maximization of acquired benefit over a defined period of time. Studies based on reinforcement-guided decision making have implicated a large network of neural circuits across the brain. This network includes a wide range of cortical (e.g., orbitofrontal cortex and anterior cingulate cortex) and subcortical (e.g., nucleus accumbens and subthalamic nucleus) brain areas and uses several neurotransmitter systems (e.g., dopaminergic and serotonergic systems) to communicate and process decision-related information. This review discusses distinct as well as overlapping contributions of these networks and neurotransmitter systems to the processing of decision making. We end the review by touching on neural circuitry and neuromodulatory regulation of exploratory decision making.


Subject(s)
Brain/cytology , Brain/metabolism , Neurons/physiology , Reinforcement, Psychology , Brain Chemistry , Decision Making/physiology , Humans , Neurotransmitter Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...