Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BJR Open ; 5(1): 20230033, 2023.
Article in English | MEDLINE | ID: mdl-37953871

ABSTRACT

Artificial intelligence (AI) has transitioned from the lab to the bedside, and it is increasingly being used in healthcare. Radiology and Radiography are on the frontline of AI implementation, because of the use of big data for medical imaging and diagnosis for different patient groups. Safe and effective AI implementation requires that responsible and ethical practices are upheld by all key stakeholders, that there is harmonious collaboration between different professional groups, and customised educational provisions for all involved. This paper outlines key principles of ethical and responsible AI, highlights recent educational initiatives for clinical practitioners and discusses the synergies between all medical imaging professionals as they prepare for the digital future in Europe. Responsible and ethical AI is vital to enhance a culture of safety and trust for healthcare professionals and patients alike. Educational and training provisions for medical imaging professionals on AI is central to the understanding of basic AI principles and applications and there are many offerings currently in Europe. Education can facilitate the transparency of AI tools, but more formalised, university-led training is needed to ensure the academic scrutiny, appropriate pedagogy, multidisciplinarity and customisation to the learners' unique needs are being adhered to. As radiographers and radiologists work together and with other professionals to understand and harness the benefits of AI in medical imaging, it becomes clear that they are faced with the same challenges and that they have the same needs. The digital future belongs to multidisciplinary teams that work seamlessly together, learn together, manage risk collectively and collaborate for the benefit of the patients they serve.

2.
PLOS Digit Health ; 2(10): e0000229, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37878569

ABSTRACT

AI is becoming more prevalent in healthcare and is predicted to be further integrated into workflows to ease the pressure on an already stretched service. The National Health Service in the UK has prioritised AI and Digital health as part of its Long-Term Plan. Few studies have examined the human interaction with such systems in healthcare, despite reports of biases being present with the use of AI in other technologically advanced fields, such as finance and aviation. Understanding is needed of how certain user characteristics may impact how radiographers engage with AI systems in use in the clinical setting to mitigate against problems before they arise. The aim of this study is to determine correlations of skills, confidence in AI and perceived knowledge amongst student and qualified radiographers in the UK healthcare system. A machine learning based AI model was built to predict if the interpreter was either a student (n = 67) or a qualified radiographer (n = 39) in advance, using important variables from a feature selection technique named Boruta. A survey, which required the participant to interpret a series of plain radiographic examinations with and without AI assistance, was created on the Qualtrics survey platform and promoted via social media (Twitter/LinkedIn), therefore adopting convenience, snowball sampling This survey was open to all UK radiographers, including students and retired radiographers. Pearson's correlation analysis revealed that males who were proficient in their profession were more likely than females to trust AI. Trust in AI was negatively correlated with age and with level of experience. A machine learning model was built, the best model predicted the image interpreter to be qualified radiographers with 0.93 area under curve and a prediction accuracy of 93%. Further testing in prospective validation cohorts using a larger sample size is required to determine the clinical utility of the proposed machine learning model.

4.
J Med Imaging Radiat Sci ; 53(3): 347-361, 2022 09.
Article in English | MEDLINE | ID: mdl-35715359

ABSTRACT

INTRODUCTION: As a profession, radiographers have always been keen on adapting and integrating new technologies. The increasing integration of artificial intelligence (AI) into clinical practice in the last five years has been met with scepticism by some, who predict the demise of the profession, whilst others suggest a bright future with AI, full of opportunities and synergies. Post COVID-19 pandemic need for economic recovery and a backlog of medical imaging and reporting may accelerate the adoption of AI. It is therefore timely to appreciate practitioners' perceptions of AI used in clinical practice and their perception of the short-term impact on the profession. AIM: This study aims to explore the perceptions of AI in the UK radiography workforce and to investigate its current AI applications and future technological expectations of radiographers. METHODS: An online survey (QualtricsⓇ) was created by a team of radiography AI experts. The survey was disseminated via social media and professional networks in the UK. Demographic information and perceptions of the impact of AI on several aspects of the radiography profession were gathered, including the current use of AI in practice, future expectations and the perceived impact of AI on the profession. RESULTS: 411 responses were collected (80% diagnostic radiographers (DR); 20% therapeutic radiographers (TR)). Awareness of AI used in clinical practice is low, with DR respondents suggesting AI will have the most value/potential in cross sectional imaging and image reporting. TR responses linked AI as having most value in treatment planning, contouring, and image acquisition/matching. Respondents felt that AI will impact radiographers' daily work (DR, 79.6%; TR, 88.9%) by standardising some aspects of patient care and technical factors of radiography practice. A mixed response about impact on careers was reported. CONCLUSIONS: Respondents were unsure about the ways in which AI is currently used in practice and how AI will impact on careers in the future. It was felt that AI integration will lead to increased job opportunities to contribute to decision making as an end user. Job security was not identified as a cause for concern.


Subject(s)
Artificial Intelligence , COVID-19 , Cross-Sectional Studies , Humans , Pandemics , United Kingdom
5.
Front Digit Health ; 3: 739327, 2021.
Article in English | MEDLINE | ID: mdl-34859245

ABSTRACT

Introduction: The use of artificial intelligence (AI) in medical imaging and radiotherapy has been met with both scepticism and excitement. However, clinical integration of AI is already well-underway. Many authors have recently reported on the AI knowledge and perceptions of radiologists/medical staff and students however there is a paucity of information regarding radiographers. Published literature agrees that AI is likely to have significant impact on radiology practice. As radiographers are at the forefront of radiology service delivery, an awareness of the current level of their perceived knowledge, skills, and confidence in AI is essential to identify any educational needs necessary for successful adoption into practice. Aim: The aim of this survey was to determine the perceived knowledge, skills, and confidence in AI amongst UK radiographers and highlight priorities for educational provisions to support a digital healthcare ecosystem. Methods: A survey was created on Qualtrics® and promoted via social media (Twitter®/LinkedIn®). This survey was open to all UK radiographers, including students and retired radiographers. Participants were recruited by convenience, snowball sampling. Demographic information was gathered as well as data on the perceived, self-reported, knowledge, skills, and confidence in AI of respondents. Insight into what the participants understand by the term "AI" was gained by means of a free text response. Quantitative analysis was performed using SPSS® and qualitative thematic analysis was performed on NVivo®. Results: Four hundred and eleven responses were collected (80% from diagnostic radiography and 20% from a radiotherapy background), broadly representative of the workforce distribution in the UK. Although many respondents stated that they understood the concept of AI in general (78.7% for diagnostic and 52.1% for therapeutic radiography respondents, respectively) there was a notable lack of sufficient knowledge of AI principles, understanding of AI terminology, skills, and confidence in the use of AI technology. Many participants, 57% of diagnostic and 49% radiotherapy respondents, do not feel adequately trained to implement AI in the clinical setting. Furthermore 52% and 64%, respectively, said they have not developed any skill in AI whilst 62% and 55%, respectively, stated that there is not enough AI training for radiographers. The majority of the respondents indicate that there is an urgent need for further education (77.4% of diagnostic and 73.9% of therapeutic radiographers feeling they have not had adequate training in AI), with many respondents stating that they had to educate themselves to gain some basic AI skills. Notable correlations between confidence in working with AI and gender, age, and highest qualification were reported. Conclusion: Knowledge of AI terminology, principles, and applications by healthcare practitioners is necessary for adoption and integration of AI applications. The results of this survey highlight the perceived lack of knowledge, skills, and confidence for radiographers in applying AI solutions but also underline the need for formalised education on AI to prepare the current and prospective workforce for the upcoming clinical integration of AI in healthcare, to safely and efficiently navigate a digital future. Focus should be given on different needs of learners depending on age, gender, and highest qualification to ensure optimal integration.

SELECTION OF CITATIONS
SEARCH DETAIL
...