Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Alzheimers Dement (N Y) ; 10(2): e12466, 2024.
Article in English | MEDLINE | ID: mdl-38596483

ABSTRACT

INTRODUCTION: The Finnish Geriatric Intervention Study (FINGER) led to the global dementia risk reduction initiative: World-Wide FINGERS (WW-FINGERS). As part of WW-FINGERS, the Australian AU-ARROW study mirrors aspects of FINGER, as well as US-POINTER. METHOD: AU-ARROW is a randomized, single-blind, multisite, 2-year clinical trial (n = 600; aged 55-79). The multimodal lifestyle intervention group will engage in aerobic exercise, resistance training and stretching, dietary advice to encourage MIND diet adherence, BrainHQ cognitive training, and medical monitoring and health education. The Health Education and Coaching group will receive occasional health education sessions. The primary outcome measure is the change in a global composite cognitive score. Extra value will emanate from blood biomarker analysis, positron emission tomography (PET) imaging, brain magnetic resonance imaging (MRI), and retinal biomarker tests. DISCUSSION: The finalized AU-ARROW protocol is expected to allow development of an evidence-based innovative treatment plan to reduce cognitive decline and dementia risk, and effective transfer of research outcomes into Australian health policy. Highlights: Study protocol for a single-blind, randomized controlled trial, the AU-ARROW Study.The AU-ARROW Study is a member of the World-Wide FINGERS (WW-FINGERS) initiative.AU-ARROW's primary outcome measure is change in a global composite cognitive score.Extra significance from amyloid PET imaging, brain MRI, and retinal biomarker tests.Leading to development of an innovative treatment plan to reduce cognitive decline.

2.
Alzheimers Dement (Amst) ; 16(2): e12579, 2024.
Article in English | MEDLINE | ID: mdl-38651160

ABSTRACT

INTRODUCTION: This study investigated whether self-reported sleep quality is associated with brain amyloid beta (Aß) accumulation. METHODS: Linear mixed effect model analyses were conducted for 189 cognitively unimpaired (CU) older adults (mean ± standard deviation 74.0 ± 6.2; 53.2% female), with baseline self-reported sleep data, and positron emission tomography-determined brain Aß measured over a minimum of three time points (range 33.3-72.7 months). Analyses included random slopes and intercepts, interaction for apolipoprotein E (APOE) ε4 allele status, and time, adjusting for sex and baseline age. RESULTS: Sleep duration <6 hours, in APOE ε4 carriers, and sleep efficiency <65%, in the whole sample and APOE ε4 non-carriers, is associated with faster accumulation of brain Aß. DISCUSSION: These findings suggest a role for self-reported suboptimal sleep efficiency and duration in the accumulation of Alzheimer's disease (AD) neuropathology in CU individuals. Additionally, poor sleep efficiency represents a potential route via which individuals at lower genetic risk may progress to preclinical AD. Highlights: In cognitively unimpaired older adults self-report sleep is associated with brain amyloid beta (Aß) accumulation.Across sleep characteristics, this relationship differs by apolipoprotein E (APOE) genotype.Sleep duration <6 hours is associated with faster brain Aß accumulation in APOE ε4 carriers.Sleep efficiency < 65% is associated with faster brain Aß accumulation in APOE ε4 non-carriers.Personalized sleep interventions should be studied for potential to slow Aß accumulation.

3.
Geroscience ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488949

ABSTRACT

Physical activity is a promising preventative strategy for Alzheimer's disease: it is associated with lower dementia risk, better cognition, greater brain volume and lower brain beta-amyloid. Blood-based biomarkers have emerged as a low-cost, non-invasive strategy for detecting preclinical Alzheimer's disease, however, there is limited literature examining the effect of exercise (a structured form of physical activity) on blood-based biomarkers. The current study investigated the influence of a 6-month exercise intervention on levels of plasma beta-amyloid (Aß42, Aß40, Aß42/40), phosphorylated tau (p-tau181), glial fibrillary acidic protein (GFAP) and neurofilament light (NfL) chain in cognitively unimpaired older adults, and as a secondary aim, whether blood-based biomarkers related to cognition. Ninety-nine community-dwelling older adults (69.1 ± 5.2) were allocated to an inactive control, or to moderate or high intensity exercise groups where they cycled twice weekly for six months. At baseline and six months (post-intervention), fasted blood was collected and analysed using single molecule array (SIMOA) assays, and cognition was assessed. Results demonstrated no change in levels of any plasma biomarker from pre- to post-intervention. At baseline, higher NfL was associated with poorer cognition (ß = -0.33, SE = 0.13, adjusted p = .042). Exploratory analyses indicated higher cardiorespiratory fitness was associated with higher NfL and GFAP levels in apolipoprotein E (APOE) ε4 non-carriers compared to ε4 carriers (NfL, ß = -0.43, SE = 0.19, p = .029; GFAP, ß = -0.41, SE = 0.20, p = .044), though this association was mediated by body mass index (BMI). These results highlight the importance of considering BMI in analysis of blood-based biomarkers, especially when investigating differences between APOE ε4 carriers and non-carriers. Our results also indicate that longer follow-up periods may be required to observe exercise-induced change in blood-based biomarkers.

4.
Nutrients ; 16(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337696

ABSTRACT

Alzheimer's disease (AD), the most prevalent form of dementia, is characterized by the accumulation of amyloid-beta (Aß) plaques and hyperphosphorylated tau tangles. Currently, Alzheimer's disease (AD) impacts 50 million individuals, with projections anticipating an increase to 152 million by the year 2050. Despite the increasing global prevalence of AD, its underlying pathology remains poorly understood, posing challenges for early diagnosis and treatment. Recent research suggests a link between gut dysbiosis and the aggregation of Aß, the development of tau proteins, and the occurrence of neuroinflammation and oxidative stress are associated with AD. However, investigations into the gut-brain axis (GBA) in the context of AD progression and pathology have yielded inconsistent findings. This review aims to enhance our understanding of microbial diversity at the species level and the role of these species in AD pathology. Additionally, this review addresses the influence of confounding elements, including diet, probiotics, and prebiotics, on AD throughout different stages (preclinical, mild cognitive impairment (MCI), and AD) of its progression.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Diet , Brain/metabolism
5.
Alzheimers Dement ; 20(2): 1350-1359, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984813

ABSTRACT

INTRODUCTION: The current study evaluated the relationship between habitual physical activity (PA) levels and brain amyloid beta (Aß) over 15 years in a cohort of cognitively unimpaired older adults. METHODS: PA and Aß measures were collected over multiple timepoints from 731 cognitively unimpaired older adults participating in the Australian Imaging, Biomarkers and Lifestyle (AIBL) Study of Aging. Regression modeling examined cross-sectional and longitudinal relationships between PA and brain Aß. Moderation analyses examined apolipoprotein E (APOE) ε4 carriage impact on the PA-Aß relationship. RESULTS: PA was not associated with brain Aß at baseline (ß = -0.001, p = 0.72) or over time (ß = -0.26, p = 0.24). APOE ε4 status did not moderate the PA-Aß relationship over time (ß = 0.12, p = 0.73). Brain Aß levels did not predict PA trajectory (ß = -54.26, p = 0.59). DISCUSSION: Our study did not identify a relationship between habitual PA and brain Aß levels. HIGHLIGHTS: Physical activity levels did not predict brain amyloid beta (Aß) levels over time in cognitively unimpaired older adults (≥60 years of age). Apolipoprotein E (APOE) ε4 carrier status did not moderate the physical activity-brain Aß relationship over time. Physical activity trajectories were not impacted by brain Aß levels.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Aged , Amyloid beta-Peptides/metabolism , Cross-Sectional Studies , Apolipoprotein E4/genetics , Australia , Brain/diagnostic imaging , Brain/metabolism , Apolipoproteins E/genetics , Exercise , Positron-Emission Tomography
6.
Front Psychol ; 14: 1207199, 2023.
Article in English | MEDLINE | ID: mdl-37868603

ABSTRACT

Background: Exercise can improve cognition in aging, however it is unclear how exercise influences cognition, and sleep may partially explain this association. The current study aimed to investigate whether objectively measured sleep mediates the effect of an acute exercise intervention on cognition in older adults. Methods: Participants were 30 cognitively unimpaired, physically active older adults (69.2 ± 4.3 years) with poor sleep (determined via self-report). After a triple baseline cognitive assessment to account for any natural fluctuation in cognitive performance, participants completed either a single bout of 20-minutes of high intensity exercise on a cycle ergometer, or a control condition, in a cross-over trial design. Cognition was measured immediately post-intervention and the following day, and sleep (total sleep time, sleep onset latency, sleep efficiency, % of rapid eye movement sleep, light sleep and deep sleep) was characterized using WatchPAT™ at baseline (5 nights) and measured for one night after both exercise and control conditions. Results: Results showed no effect of the exercise intervention on cognition immediately post-intervention, nor an effect of acute exercise on any sleep variable. There was no mediating effect of sleep on associations between exercise and cognition. However, a change from baseline to post-intervention in light sleep and deep sleep did predict change in episodic memory at the ~24 h post-intervention cognitive assessment, regardless of intervention condition. Discussion: There was no effect of acute high intensity exercise on sleep or cognition in the current study. However, results suggest that associations between sleep and cognition may exist independently of exercise in our sample. Further research is required, and such studies may aid in informing the most effective lifestyle interventions for cognitive health.

7.
Int J Geriatr Psychiatry ; 38(10): e6016, 2023 10.
Article in English | MEDLINE | ID: mdl-37864564

ABSTRACT

OBJECTIVES: Observational studies consistently demonstrate that physical activity is associated with elevated cognitive function, however, there remains significant heterogeneity in cognitive outcomes from randomized exercise interventions. Individual variation in sleep behaviours may be a source of variability in the effectiveness of exercise-induced cognitive change, however this has not yet been investigated. The current study aimed to (1) investigate the influence of a 6-month exercise intervention on sleep, assessed pre- and post-intervention and, (2) investigate whether baseline sleep measures moderate exercise-induced cognitive changes. METHODS: We utilised data from the Intense Physical Activity and Cognition (IPAC) study (n = 89), a 6-month moderate intensity and high intensity exercise intervention, in cognitively unimpaired community-dwelling older adults aged 60-80 (68.76 ± 5.32). Exercise was supervised and completed on a stationary exercise bicycle, and cognitive function was measured using a comprehensive neuropsychological battery administered pre- and post-intervention. Sleep was measured using the Pittsburgh sleep quality index. There was no effect of the exercise intervention on any sleep outcomes from pre- to post-intervention. RESULTS: There was a significant moderating effect of baseline sleep efficiency on both episodic memory and global cognition within the moderate intensity exercise group, such that those with poorer sleep efficiency at baseline showed greater exercise-induced improvements in episodic memory. CONCLUSIONS: These results suggest that those with poorer sleep may have the greatest exercise-induced cognitive benefits and that baseline sleep behaviours may be an important source of heterogeneity in previous exercise interventions targeting cognitive outcomes.


Subject(s)
Cognition , Memory, Episodic , Humans , Aged , Exercise , Sleep
8.
Neurobiol Aging ; 132: 120-130, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37801885

ABSTRACT

Dysfunction of the cholinergic basal forebrain (BF) system and amyloid-ß (Aß) deposition are early pathological features in Alzheimer's disease (AD). However, their association in early AD is not well-established. This study investigated the nature and magnitude of volume loss in the BF, over an extended period, in 516 older adults who completed Aß-PET and serial magnetic resonance imaging scans. Individuals were grouped at baseline according to the presence of cognitive impairment (CU, CI) and Aß status (Aß-, Aß+). Longitudinal volumetric changes in the BF and hippocampus were assessed across groups. The results indicated that high Aß levels correlated with faster volume loss in the BF and hippocampus, and the effect of Aß varied within BF subregions. Compared to CU Aß+ individuals, Aß-related loss among CI Aß+ adults was much greater in the predominantly cholinergic subregion of Ch4p, whereas no difference was observed for the Ch1/Ch2 region. The findings support early and substantial vulnerability of the BF and further reveal distinctive degeneration of BF subregions during early AD.


Subject(s)
Alzheimer Disease , Basal Forebrain , Cognitive Dysfunction , Humans , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Basal Forebrain/diagnostic imaging , Basal Forebrain/pathology , Aging/pathology , Amyloid beta-Peptides , Magnetic Resonance Imaging , Cholinergic Agents , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Positron-Emission Tomography
9.
J Alzheimers Dis Rep ; 7(1): 823-843, 2023.
Article in English | MEDLINE | ID: mdl-37662612

ABSTRACT

Sirtuin-1 (Sirt1), encoded by the SIRT1 gene, is a conserved Nicotinamide adenine dinucleotide (NAD+) dependent deacetylase enzyme, considered as the master regulator of metabolism in humans. Sirt1 contributes to a wide range of biological pathways via several mechanisms influenced by lifestyle, such as diet and exercise. The importance of a healthy lifestyle is of relevance to highly prevalent modern chronic diseases, such as Alzheimer's disease (AD). There is growing evidence at multiple levels for a role of Sirt1/SIRT1 in AD pathological mechanisms. As such, this review will explore the relevance of Sirt1 to AD pathological mechanisms, by describing the involvement of Sirt1/SIRT1 in the development of AD pathological hallmarks, through its impact on the metabolism of amyloid-ß and degradation of phosphorylated tau. We then explore the involvement of Sirt1/SIRT1 across different AD-relevant biological processes, including cholesterol metabolism, inflammation, circadian rhythm, and gut microbiome, before discussing the interplay between Sirt1 and AD-related lifestyle factors, such as diet, physical activity, and smoking, as well as depression, a common comorbidity. Genome-wide association studies have explored potential associations between SIRT1 and AD, as well as AD risk factors and co-morbidities. We summarize this evidence at the genetic level to highlight links between SIRT1 and AD, particularly associations with AD-related risk factors, such as heart disease. Finally, we review the current literature of potential interactions between SIRT1 genetic variants and lifestyle factors and how this evidence supports the need for further research to determine the relevance of these interactions with respect to AD and dementia.

10.
Clin Nutr ; 42(8): 1251-1259, 2023 08.
Article in English | MEDLINE | ID: mdl-37331149

ABSTRACT

BACKGROUND & AIMS: Dietary nitrate improves cardiovascular health via a nitric oxide (NO) pathway. NO is key to both cardiovascular and brain health. There is also a strong association between vascular risk factors and brain health. Dietary nitrate intake could therefore be associated with better cognitive function and reduced risk of cognitive decline. This is yet to be investigated. The aim of this study was to investigate the association between habitual intake of dietary nitrate from sources where nitrate is naturally present, and cognitive function, and cognitive decline, in the presence or absence of the apolipoprotein E (APOE) ε4 allele. METHODS: The study included 1254 older adult participants of the Australian Imaging, Biomarkers and Lifestyle Study of Ageing who were cognitively normal at baseline. Plant-derived, vegetable-derived, animal derived nitrate (not including meat where nitrate is an allowed additive), and total nitrate intakes were calculated from baseline food frequency questionnaires using comprehensive nitrate databases. Cognition was assessed at baseline and every 18 months over a follow-up period of 126 months using a comprehensive neuropsychological test battery. Multivariable-adjusted linear mixed effect models were used to examine the association between baseline nitrate intake and cognition over the 126 months (median [IQR] follow-up time of 36 [18-72] months), stratified by APOE ε4 carrier status. RESULTS: In non APOE ε4 carriers, for every 60 mg/day higher intake of plant-derived nitrate at baseline there was an associated higher language score [ß (95% CI): 0.10 (0.01, 0.19)] over 126 months, after multivariable adjustments. In APOE ε4 carriers, there was an associated better episodic recall memory [0.24 (0.08, 0.41)] and recognition memory [0.15 (0.01, 0.30)] scores. Similar associations were seen for the intakes of vegetable-derived and total nitrate. Additionally, in APOE ε4 carriers, for every 6 mg/day higher intake of animal-derived nitrate (excluding meat with nitrate as an allowed additive) at baseline there was an associated higher executive function score [ß (95% CI): 1.41 (0.42, 2.39)]. We did not find any evidence of an association between dietary nitrate intake and rate of cognitive decline. CONCLUSION: Our results suggest that habitual intake of dietary nitrate from sources where nitrate is naturally present impacts cognitive performance in an APOE genotype contingent manner. Further work is needed to validate our findings and understand potential mechanisms underlying the observed effects.


Subject(s)
Cognition , Nitrates , Prospective Studies , Australia , Brain/metabolism , Apolipoprotein E4/genetics , Genotype , Neuropsychological Tests
11.
J Alzheimers Dis ; 92(2): 615-628, 2023.
Article in English | MEDLINE | ID: mdl-36776057

ABSTRACT

BACKGROUND: Astrocyte reactivity is an early event along the Alzheimer's disease (AD) continuum. Plasma glial fibrillary acidic protein (GFAP), posited to reflect astrocyte reactivity, is elevated across the AD continuum from preclinical to dementia stages. Monoamine oxidase-B (MAO-B) is also elevated in reactive astrocytes observed using 18F-SMBT-1 PET in AD. OBJECTIVE: The objective of this study was to evaluate the association between the abovementioned astrocyte reactivity biomarkers. METHODS: Plasma GFAP and Aß were measured using the Simoa® platform in participants who underwent brain 18F-SMBT-1 and Aß-PET imaging, comprising 54 healthy control (13 Aß-PET+ and 41 Aß-PET-), 11 mild cognitively impaired (3 Aß-PET+ and 8 Aß-PET-) and 6 probable AD (5 Aß-PET+ and 1 Aß-PET-) individuals. Linear regressions were used to assess associations of interest. RESULTS: Plasma GFAP was associated with 18F-SMBT-1 signal in brain regions prone to early Aß deposition in AD, such as the supramarginal gyrus (SG), posterior cingulate (PC), lateral temporal (LT) and lateral occipital cortex (LO). After adjusting for age, sex, APOE ɛ4 genotype, and soluble Aß (plasma Aß42/40 ratio), plasma GFAP was associated with 18F-SMBT-1 signal in the SG, PC, LT, LO, and superior parietal cortex (SP). On adjusting for age, sex, APOE ɛ4 genotype and insoluble Aß (Aß-PET), plasma GFAP was associated with 18F-SMBT-1 signal in the SG. CONCLUSION: There is an association between plasma GFAP and regional 18F-SMBT-1 PET, and this association appears to be dependent on brain Aß load.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Astrocytes/metabolism , Glial Fibrillary Acidic Protein/metabolism , Cognitive Dysfunction/genetics , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography/methods , Biomarkers/metabolism , Apolipoproteins E/metabolism , tau Proteins/metabolism
12.
Alzheimers Dement ; 19(7): 2984-2993, 2023 07.
Article in English | MEDLINE | ID: mdl-36656659

ABSTRACT

INTRODUCTION: The current study investigated the association between objectively measured physical activity and cognition in older adults over approximately 8 years. METHODS: We utilized data from 199 cognitively unimpaired individuals from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study, aged ≥60. Actigraphy was used to measure physical activity (intensity, total activity, and energy expenditure) at baseline. Cognition was assessed using a comprehensive cognitive battery every 18-months. RESULTS: Higher baseline energy expenditure predicted better episodic recall memory and global cognition over the follow-up period (p = 0.031; p = 0.047, respectively). Those with higher physical activity intensity and greater total activity also had better global cognition over time (both p = 0.005). Finally, higher total physical activity predicted improved episodic recall memory over time (p = 0.022). DISCUSSION: These results suggest that physical activity can preserve cognition and that activity intensity may play an important role in this association. HIGHLIGHTS: Greater total physical activity predicts preserved episodic memory and global cognition. Moderate intensity physical activity (>3.7 metabolic equivalents of task [MET]) predicts preserved global cognition. Expending > 373 kilocalories per day may benefit episodic memory and global cognition.


Subject(s)
Cognitive Dysfunction , Memory, Episodic , Humans , Aged , Longitudinal Studies , Neuropsychological Tests , Australia , Cognition , Exercise
13.
Behav Brain Res ; 437: 114108, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36100010

ABSTRACT

BACKGROUND: Lifestyle factors such as physical activity and optimal sleep are associated with better cognition and lower levels of Alzheimer's disease (AD) biomarkers, including brain beta-amyloid (Aß) burden. OBJECTIVE: We utilised cross-sectional data from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study to determine whether self-reported physical activity (measured via the International Physical Activity Questionnaire) moderates the relationship between self-reported sleep (measured via the Pittsburgh Sleep Quality Index), cognition, and brain Aß. METHODS: Participants were 349 community-dwelling cognitively normal older adults (75.3 ± 5.7 years), all of whom underwent comprehensive cognitive assessment. Data from a subset of participants (n = 201) were used for analyses with brain Aß burden (measured by positron emission tomography) as the outcome. RESULT: Physical activity moderated the relationship between sleep duration and episodic memory (ß = -0.10, SE =0.03, p = .005), and sleep efficiency and episodic memory (ß = -0.09, SE =0.04, p = .011), such that greater amounts of physical activity mitigated the impact of suboptimal sleep duration and efficiency on episodic memory. Physical activity also moderated the relationship between sleep duration and brain Aß (ß = -0.13, SE =0.06, p = .031), and overall sleep quality and brain Aß (ß = 0.13, SE =0.06, p = .027). CONCLUSION: Our findings suggest that physical activity may play an important role in the relationship between sleep and cognitive function, and brain Aß.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Brain , Cognition , Exercise , Sleep , Aged , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Alzheimer Disease/psychology , Amyloid beta-Peptides/metabolism , Australia , Biomarkers , Brain/diagnostic imaging , Brain/metabolism , Cognition/physiology , Cross-Sectional Studies , Exercise/physiology , Neuropsychological Tests , Positron-Emission Tomography , Sleep/physiology , Independent Living
14.
Alzheimers Dement (Amst) ; 14(1): e12375, 2022.
Article in English | MEDLINE | ID: mdl-36447478

ABSTRACT

Background: In Alzheimer's disease (AD), plasma amyloid beta (Aß)1-42 and phosphorylated tau (p-tau) predict high amyloid status from Aß positron emission tomography (PET); however, the extent to which combination of these plasma assays can predict remains unknown. Methods: Prototype Simoa assays were used to measure plasma samples from participants who were either cognitively normal (CN) or had mild cognitive impairment (MCI)/AD in the Australian Imaging, Biomarkers and Lifestyle (AIBL) study. Results: The p-tau181/Aß1-42 ratio showed the best prediction of Aß-PET across all participants (area under the curve [AUC] = 0.905, 95% confidence interval [CI]: 0.86-0.95) and in CN (AUC = 0.873; 0.80-0.94), and symptomatic (AUC = 0.908; 0.82-1.00) adults. Plasma p-tau181/Aß1-42 ratio correlated with cerebrospinal fluid (CSF) p-tau181 (Elecsys, Spearman's ρ = 0.74, P < 0.0001) and predicted abnormal CSF Aß (AUC = 0.816; 0.74-0.89). The p-tau181/Aß1-42 ratio also predicted future rates of cognitive decline assessed by AIBL Preclinical Alzheimer Cognitive Composite or Clinical Dementia Rating Sum of Boxes (P < 0.0001). Discussion: Plasma p-tau181/Aß1-42 ratio predicted both Aß-PET status and cognitive decline, demonstrating potential as both a diagnostic aid and as a screening and prognostic assay for preclinical AD trials.

15.
Food Funct ; 13(24): 12572-12589, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36377891

ABSTRACT

There is currently no effective treatment for dementia, of which Alzheimer's disease (AD) is the most common form. It is, therefore, imperative to focus on evidence-based preventive strategies to combat this extremely debilitating chronic disease. Nitric oxide (NO) is a key signalling molecule in the cardiovascular, cerebrovascular, and central nervous systems. Vegetables rich in nitrate, such as spinach and beetroot, are an important source of NO, with beneficial effects on validated markers of cardiovascular health and an association with a lower risk of cardiovascular disease. Given the link between cardiovascular disease risk factors and dementia, together with the important role of NO in vascular health and cognition, it is important to determine whether dietary nitrate could also improve cognitive function, markers of brain health, and lower risk of dementia. This review presents an overview of NO's role in the cardiovascular, cerebrovascular, and central nervous systems; an overview of the available evidence that nitrate, through effects on NO, improves cardiovascular health; and evaluates the current evidence regarding dietary nitrate's potential role in cerebrovascular health, cognitive function, and brain health assessed via biomarkers.


Subject(s)
Alzheimer Disease , Cardiovascular Diseases , Cognitive Dysfunction , Humans , Nitrates , Cardiovascular Diseases/prevention & control , Cognition , Vegetables , Cognitive Dysfunction/prevention & control , Nitric Oxide
16.
Neurobiol Dis ; 171: 105783, 2022 09.
Article in English | MEDLINE | ID: mdl-35675895

ABSTRACT

Increasing evidence suggests that kynurenine pathway (KP) dyshomeostasis may promote disease progression in dementia. Studies in Alzheimer's disease (AD) patients confirm KP dyshomeostasis in plasma and cerebrospinal fluid (CSF) which correlates with amyloid-ß and tau pathology. Herein, we performed the first comprehensive study assessing baseline levels of KP metabolites in participants enrolling in the Australian Imaging Biomarkers Flagship Study of Aging. Our purpose was to test the hypothesis that changes in KP metabolites may be biomarkers of dementia processes that are largely silent. We used a cross-sectional analytical approach to assess non-progressors (N = 73); cognitively normal (CN) or mild cognitive impairment (MCI) participants at baseline and throughout the study, and progressors (N = 166); CN or MCI at baseline but progressing to either MCI or AD during the study. Significant KP changes in progressors included increased 3-hydroxyanthranilic acid (3-HAA) and 3-hydroxyanthranilic acid/anthranilic acid (3-HAA/AA) ratio, the latter having the largest effect on the odds of an individual being a progressor (OR 35.3; 95% CI between 14 and 104). 3-HAA levels were hence surprisingly bi-phasic, high in progressors but low in non-progressors or participants who had already transitioned to MCI or dementia. This is a new, unexpected and interesting result, as most studies of the KP in neurodegenerative disease show reduced 3-HAA/AA ratio after diagnosis. The neuroprotective metabolite picolinic acid was also significantly decreased while the neurotoxic metabolite 3-hydroxykynurenine increased in progressors. These results were significant even after adjustment for confounders. Considering the magnitude of the OR to predict change in cognition, it is important that these findings are replicated in other populations. Independent validation of our findings may confirm the utility of 3-HAA/AA ratio to predict change in cognition leading to dementia in clinical settings.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , 3-Hydroxyanthranilic Acid , Alzheimer Disease/metabolism , Amyloid beta-Peptides/cerebrospinal fluid , Australia , Biomarkers , Cognitive Dysfunction/cerebrospinal fluid , Cross-Sectional Studies , Disease Progression , Humans , Kynurenine , Peptide Fragments/cerebrospinal fluid , tau Proteins/cerebrospinal fluid
17.
Front Aging Neurosci ; 14: 771214, 2022.
Article in English | MEDLINE | ID: mdl-35418852

ABSTRACT

Previous studies have indicated that physical activity may be beneficial in reducing the risk for Alzheimer's disease (AD), although the underlying mechanisms are not fully understood. The goal of this study was to evaluate the relationship between habitual physical activity levels and brain amyloid deposition and AD-related blood biomarkers (i.e., measured using a novel high-performance mass spectrometry-based assay), in apolipoprotein E (APOE) ε4 carriers and noncarriers. We evaluated 143 cognitively normal older adults, all of whom had brain amyloid deposition assessed using positron emission tomography and had their physical activity levels measured using the International Physical Activity Questionnaire (IPAQ). We observed an inverse correlation between brain amyloidosis and plasma beta-amyloid (Aß)1-42 but found no association between brain amyloid and plasma Aß1-40 and amyloid precursor protein (APP)669-711. Additionally, higher levels of physical activity were associated with lower plasma Aß1-40, Aß1-42, and APP669-711 levels in APOE ε4 noncarriers. The ratios of Aß1-40/Aß1-42 and APP669-711/Aß1-42, which have been associated with higher brain amyloidosis in previous studies, differed between APOE ε4 carriers and non-carriers. Taken together, these data indicate a complex relationship between physical activity and brain amyloid deposition and potential blood-based AD biomarkers in cognitively normal older adults. In addition, the role of APOE ε4 is still unclear, and more studies are necessary to bring further clarification.

18.
Alzheimers Dement (Amst) ; 14(1): e12307, 2022.
Article in English | MEDLINE | ID: mdl-35415202

ABSTRACT

Introduction: We evaluated a new Simoa plasma assay for phosphorylated tau (P-tau) at aa217 enhanced by additional p-tau sites (p217+tau). Methods: Plasma p217+tau levels were compared to 18F-NAV4694 amyloid beta (Aß) positron emission tomography (PET) and 18F-MK6240 tau PET in 174 cognitively impaired (CI) and 223 cognitively unimpaired (CU) participants. Results: Compared to Aß- CU, the plasma levels of p217+tau increased 2-fold in Aß+ CU and 3.5-fold in Aß+ CI. In Aß- the p217+tau levels did not differ significantly between CU and CI. P217+tau correlated with Aß centiloids P = .67 (CI, P = .64; CU, P = .45) and tau SUVRMT P = .63 (CI, P = .69; CU, P = .34). Area under curve (AUC) for Alzheimer's disease (AD) dementia versus Aß- CU was 0.94, for AD dementia versus other dementia was 0.93, for Aß+ versus Aß- PET was 0.89, and for tau+ versus tau- PET was 0.89. Discussion: Plasma p217+tau levels elevate early in the AD continuum and correlate well with Aß and tau PET.

19.
Neurology ; 98(17): e1704-e1715, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35169009

ABSTRACT

BACKGROUND AND OBJECTIVES: This prospective study sought to determine the association of modifiable/nonmodifiable components included in the Cardiovascular Risk Factors, Aging, and Incidence of Dementia (CAIDE) risk score with hippocampal volume (HV) loss and episodic memory (EM) decline in cognitively normal (CN) older adults classified as brain ß-amyloid (Aß) negative (Aß-) or positive (Aß+). METHODS: Australian Imaging, Biomarkers and Lifestyle study participants (age 58-91 years) who completed ≥2 neuropsychological assessments and a brain Aß PET scan (n = 592) were included in this study. We computed the CAIDE risk score (age, sex, APOE ε4 status, education, hypertension, body mass index [BMI], hypercholesterolemia, physical inactivity) and a modifiable CAIDE risk score (CAIDE-MR; education, hypertension, BMI, hypercholesterolemia, physical inactivity) for each participant. Aß+ was classified using Centiloid >25. Linear mixed models assessed interactions between each CAIDE score, Aß group, and time on HV loss and EM decline. Age, sex, and APOE ε4 were included as separate predictors in CAIDE-MR models to assess differential associations. Exploratory analyses examined relationships between individual modifiable risk factors and outcomes in Aß- cognitively normal (CN) adults. RESULTS: We observed a significant Aß group × CAIDE × time interaction on HV loss (ß [SE] = -0.04 [0.01]; p < 0.000) but not EM decline (ß [SE] = -2.33 [9.96]; p = 0.98). Decomposition revealed a significant CAIDE × time interaction in Aß+ participants only. When modifiable/nonmodifiable CAIDE components were considered separately, we observed a significant Aß group × CAIDE-MR × time interaction on EM decline only (ß [SE] = 3.03 [1.18]; p = 0.01). A significant CAIDE-MR score × time interaction was observed in Aß- participants only. Significant interactions between APOE ε4 and age × time on HV loss and EM decline were observed in both groups. Exploratory analyses in Aß- CN participants revealed a significant interaction between BMI × time on EM decline (ß [SE] = -3.30 [1.43]; p = 0.02). DISCUSSION: These results are consistent with studies showing that increasing age and APOE ε4 are associated with increased rates of HV loss and EM decline. In Aß- CN adults, lower prevalence of modifiable cardiovascular risk factors was associated with less HV loss and EM decline over ∼10 years, suggesting interventions to reduce modifiable cardiovascular risk factors could be beneficial in this group.


Subject(s)
Apolipoproteins E/metabolism , Hypercholesterolemia , Hypertension , Aged , Aged, 80 and over , Apolipoprotein E4/genetics , Australia/epidemiology , Hippocampus/diagnostic imaging , Humans , Hypercholesterolemia/epidemiology , Hypercholesterolemia/genetics , Memory Disorders/psychology , Middle Aged , Prospective Studies , Risk Factors
20.
J Int Neuropsychol Soc ; 28(9): 902-915, 2022 10.
Article in English | MEDLINE | ID: mdl-34549700

ABSTRACT

OBJECTIVE: Exercise has been found to be important in maintaining neurocognitive health. However, the effect of exercise intensity level remains relatively underexplored. Thus, to test the hypothesis that self-paced high-intensity exercise and cardiorespiratory fitness (peak aerobic capacity; VO2peak) increase grey matter (GM) volume, we examined the effect of a 6-month exercise intervention on frontal lobe GM regions that support the executive functions in older adults. METHODS: Ninety-eight cognitively normal participants (age = 69.06 ± 5.2 years; n = 54 female) were randomised into either a self-paced high- or moderate-intensity cycle-based exercise intervention group, or a no-intervention control group. Participants underwent magnetic resonance imaging and fitness assessment pre-intervention, immediately post-intervention, and 12-months post-intervention. RESULTS: The intervention was found to increase fitness in the exercise groups, as compared with the control group (F = 9.88, p = <0.001). Changes in pre-to-post-intervention fitness were associated with increased volume in the right frontal lobe (ß = 0.29, p = 0.036, r = 0.27), right supplementary motor area (ß = 0.30, p = 0.031, r = 0.29), and both right (ß = 0.32, p = 0.034, r = 0.30) and left gyrus rectus (ß = 0.30, p = 0.037, r = 0.29) for intervention, but not control participants. No differences in volume were observed across groups. CONCLUSIONS: At an aggregate level, six months of self-paced high- or moderate-intensity exercise did not increase frontal GM volume. However, experimentally-induced changes in individual cardiorespiratory fitness was positively associated with frontal GM volume in our sample of older adults. These results provide evidence of individual variability in exercise-induced fitness on brain structure.


Subject(s)
Cardiorespiratory Fitness , Gray Matter , Aged , Brain/pathology , Cerebral Cortex/pathology , Female , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...