Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 60(6): 2562-2572, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28231433

ABSTRACT

Sphingosine kinase (SphK) is the major source of the lipid mediator and G protein-coupled receptor agonist sphingosine-1-phosphate (S1P). S1P promotes cell growth, survival, and migration and is a key regulator of lymphocyte trafficking. Inhibition of S1P signaling has been proposed as a strategy for treatment of inflammatory diseases and cancer. Two different formats of an enzyme-based high-throughput screen yielded two attractive chemotypes capable of inhibiting S1P formation in cells. The molecular combination of these screening hits led to compound 22a (PF-543) with 2 orders of magnitude improved potency. Compound 22a inhibited SphK1 with an IC50 of 2 nM and was more than 100-fold selective for SphK1 over the SphK2 isoform. Through the modification of tail-region substituents, the specificity of inhibition for SphK1 and SphK2 could be modulated, yielding SphK1-selective, potent SphK1/2 dual, or SphK2-preferential inhibitors.


Subject(s)
Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Amination , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Drug Discovery , Humans , Models, Molecular , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Pyrrolidines/chemistry , Pyrrolidines/pharmacology
2.
Biochem J ; 444(1): 79-88, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22397330

ABSTRACT

SphK (sphingosine kinase) is the major source of the bioactive lipid and GPCR (G-protein-coupled receptor) agonist S1P (sphingosine 1-phosphate). S1P promotes cell growth, survival and migration, and is a key regulator of lymphocyte trafficking. Inhibition of S1P signalling has been proposed as a strategy for treatment of inflammatory diseases and cancer. In the present paper we describe the discovery and characterization of PF-543, a novel cell-permeant inhibitor of SphK1. PF-543 inhibits SphK1 with a K(i) of 3.6 nM, is sphingosine-competitive and is more than 100-fold selective for SphK1 over the SphK2 isoform. In 1483 head and neck carcinoma cells, which are characterized by high levels of SphK1 expression and an unusually high rate of S1P production, PF-543 decreased the level of endogenous S1P 10-fold with a proportional increase in the level of sphingosine. In contrast with past reports that show that the growth of many cancer cell lines is SphK1-dependent, specific inhibition of SphK1 had no effect on the proliferation and survival of 1483 cells, despite a dramatic change in the cellular S1P/sphingosine ratio. PF-543 was effective as a potent inhibitor of S1P formation in whole blood, indicating that the SphK1 isoform of sphingosine kinase is the major source of S1P in human blood. PF-543 is the most potent inhibitor of SphK1 described to date and it will be useful for dissecting specific roles of SphK1-driven S1P signalling.


Subject(s)
Lysophospholipids/metabolism , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Pyrrolidines/pharmacology , Sphingosine/analogs & derivatives , Sulfones/pharmacology , Cell Line, Tumor , Cell Membrane Permeability , Humans , Lysophospholipids/blood , Methanol , Phosphorylation , Pyrrolidines/chemical synthesis , Pyrrolidines/metabolism , Sphingosine/blood , Sphingosine/metabolism , Substrate Specificity , Sulfones/chemical synthesis , Sulfones/metabolism
3.
J Biomol Screen ; 16(2): 272-7, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21297110

ABSTRACT

To facilitate discovery of compounds modulating sphingosine-1-phosphate (S1P) signaling, the authors used high-throughput mass spectrometry technology to measure S1P formation in human whole blood. Since blood contains endogenous sphingosine (SPH) and S1P, mass spectrometry was chosen to detect the conversion of an exogenously added 17-carbon-long variant of sphingosine, C17SPH, into C17S1P. The authors developed procedures to achieve homogeneous mixing of whole blood in 384-well plates and for a method requiring minimal manipulations to extract S1P from blood in 96- and 384-well plates prior to analyses using the RapidFire(®) mass spectrometry system.


Subject(s)
Enzyme Inhibitors/blood , High-Throughput Screening Assays , Mass Spectrometry , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Aminophenols/metabolism , Aminophenols/pharmacology , Dose-Response Relationship, Drug , Humans , Kinetics , Lysophospholipids/metabolism , Signal Transduction/drug effects , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Thiazoles/metabolism , Thiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...