Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 2418, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33893280

ABSTRACT

Unprecedented quantities of heat are entering the Pacific sector of the Arctic Ocean through Bering Strait, particularly during summer months. Though some heat is lost to the atmosphere during autumn cooling, a significant fraction of the incoming warm, salty water subducts (dives beneath) below a cooler fresher layer of near-surface water, subsequently extending hundreds of kilometers into the Beaufort Gyre. Upward turbulent mixing of these sub-surface pockets of heat is likely accelerating sea ice melt in the region. This Pacific-origin water brings both heat and unique biogeochemical properties, contributing to a changing Arctic ecosystem. However, our ability to understand or forecast the role of this incoming water mass has been hampered by lack of understanding of the physical processes controlling subduction and evolution of this this warm water. Crucially, the processes seen here occur at small horizontal scales not resolved by regional forecast models or climate simulations; new parameterizations must be developed that accurately represent the physics. Here we present novel high resolution observations showing the detailed process of subduction and initial evolution of warm Pacific-origin water in the southern Beaufort Gyre.

2.
Oceanography (Wash D C) ; 30(2): 38-48, 2017 Jun.
Article in English | MEDLINE | ID: mdl-35095239

ABSTRACT

The Salinity Processes in the Upper-ocean Regional Study (SPURS) aims to understand the patterns and variability of sea surface salinity. In order to capture the wide range of spatial and temporal scales associated with processes controlling salinity in the upper ocean, research vessels delivered autonomous instruments to remote sites, one in the North Atlantic and one in the Eastern Pacific. Instruments sampled for one complete annual cycle at each of these two sites, which are subject to contrasting atmospheric forcing. The SPURS field programs coordinated sampling from many different platforms, using a mix of Lagrangian and Eulerian approaches. This article discusses the motivations, implementation, and first results of the SPURS-1 and SPURS-2 programs.

4.
Nature ; 521(7550): 65-9, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25951285

ABSTRACT

Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.

5.
Science ; 332(6027): 318-22, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21393512

ABSTRACT

The ocean surface boundary layer mediates air-sea exchange. In the classical paradigm and in current climate models, its turbulence is driven by atmospheric forcing. Observations at a 1-kilometer-wide front within the Kuroshio Current indicate that the rate of energy dissipation within the boundary layer is enhanced by one to two orders of magnitude, suggesting that the front, rather than the atmospheric forcing, supplied the energy for the turbulence. The data quantitatively support the hypothesis that winds aligned with the frontal velocity catalyzed a release of energy from the front to the turbulence. The resulting boundary layer is stratified in contrast to the classically well-mixed layer. These effects will be strongest at the intense fronts found in the Kuroshio Current, the Gulf Stream, and the Antarctic Circumpolar Current, all of which are key players in the climate system.

6.
Nano Lett ; 9(8): 3066-71, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19603786

ABSTRACT

This study describes the preparation and characterization of novel multilayer core-shell nanoparticles displaying metal-enhanced Forster resonant energy transfer. The increase in range and efficiency of Forster resonant energy transfer in these fluorescent nanocomposites and their vastly improved luminosity make them promising optical probes for a variety of applications such as cell imaging and biosensing.


Subject(s)
Metal Nanoparticles/chemistry , Silicon Dioxide/chemistry , Silver/chemistry , Fluorescence Resonance Energy Transfer , Microscopy, Electron, Transmission , Surface Properties , Water/chemistry
7.
Science ; 301(5631): 355-7, 2003 Jul 18.
Article in English | MEDLINE | ID: mdl-12869758

ABSTRACT

The cascade from tides to turbulence has been hypothesized to serve as a major energy pathway for ocean mixing. We investigated this cascade along the Hawaiian Ridge using observations and numerical models. A divergence of internal tidal energy flux observed at the ridge agrees with the predictions of internal tide models. Large internal tidal waves with peak-to-peak amplitudes of up to 300 meters occur on the ridge. Internal-wave energy is enhanced, and turbulent dissipation in the region near the ridge is 10 times larger than open-ocean values. Given these major elements in the tides-to-turbulence cascade, an energy budget approaches closure.

SELECTION OF CITATIONS
SEARCH DETAIL
...