Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 40(13): 2367-2381, 2021 04.
Article in English | MEDLINE | ID: mdl-33658627

ABSTRACT

Histone deacetylase (HDAC) inhibitors are effective in MYCN-driven cancers, because of a unique need for HDAC recruitment by the MYCN oncogenic signal. However, HDAC inhibitors are much more effective in combination with other anti-cancer agents. To identify novel compounds which act synergistically with HDAC inhibitor, such as suberanoyl hydroxamic acid (SAHA), we performed a cell-based, high-throughput drug screen of 10,560 small molecule compounds from a drug-like diversity library and identified a small molecule compound (SE486-11) which synergistically enhanced the cytotoxic effects of SAHA. Effects of drug combinations on cell viability, proliferation, apoptosis and colony forming were assessed in a panel of neuroblastoma cell lines. Treatment with SAHA and SE486-11 increased MYCN ubiquitination and degradation, and markedly inhibited tumorigenesis in neuroblastoma xenografts, and, MYCN transgenic zebrafish and mice. The combination reduced ubiquitin-specific protease 5 (USP5) levels and increased unanchored polyubiquitin chains. Overexpression of USP5 rescued neuroblastoma cells from the cytopathic effects of the combination and reduced unanchored polyubiquitin, suggesting USP5 is a therapeutic target of the combination. SAHA and SE486-11 directly bound to USP5 and the drug combination exhibited a 100-fold higher binding to USP5 than individual drugs alone in microscale thermophoresis assays. MYCN bound to the USP5 promoter and induced USP5 gene expression suggesting that USP5 and MYCN expression created a forward positive feedback loop in neuroblastoma cells. Thus, USP5 acts as an oncogenic cofactor with MYCN in neuroblastoma and the novel combination of HDAC inhibitor with SE486-11 represents a novel therapeutic approach for the treatment of MYCN-driven neuroblastoma.


Subject(s)
Carcinogenesis/drug effects , Histone Deacetylase Inhibitors/pharmacology , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/drug therapy , Ubiquitin-Specific Proteases/genetics , Zebrafish Proteins/genetics , Animals , Animals, Genetically Modified/genetics , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Evaluation, Preclinical , Gene Expression Regulation, Neoplastic/drug effects , Heterografts , Humans , Mice , Neuroblastoma/genetics , Neuroblastoma/pathology , Small Molecule Libraries/pharmacology , Vorinostat/pharmacology , Zebrafish/genetics
2.
Nutr Neurosci ; 23(8): 613-627, 2020 Aug.
Article in English | MEDLINE | ID: mdl-30466372

ABSTRACT

Objectives: Excessive consumption of high fat and high sugar (HFHS) diets alters reward processing, behaviour, and changes gut microbiota profiles. Previous studies in gnotobiotic mice also provide evidence that these gut microorganisms may influence social behaviour. To further investigate these interactions, we examined the impact of the intermittent access to a HFHS diet on social behaviour, gene expression and microbiota composition in adolescent rats. Methods: Male rats were permitted intermittent daily access (2 h / day) to a palatable HFHS chow diet for 28 days across adolescence. Social interaction, social memory and novel object recognition were assessed during this period. Following testing, RT-PCR was conducted on hippocampal and prefrontal cortex (PFC) samples. 16S ribosomal RNA amplicon sequencing was used for identification and relative quantification of bacterial taxa in faecal samples. Results: We observed reduced social interaction behaviours, impaired social memory and novel object recognition in HFHS diet rats compared to chow controls. RT-PCR revealed reduced levels of monoamine oxidase A (Maoa), catechol-O-methyltransferase (Comt) and brain derived neurotrophic factor (Bdnf) mRNA in the PFC of HFHS diet rats. Faecal microbiota analysis demonstrated that the relative abundance of a number of specific bacterial taxa differed significantly between the two diet groups, in particular, Lachnospiraceae and Ruminoccoceae bacteria. Discussion: Intermittent HFHS diet consumption evoked physiological changes to the brain, particularly expression of mRNA associated with reward and neuroplasticity, and gut microbiome. These changes may underpin the observed alterations to social behaviours.


Subject(s)
Diet, High-Fat , Dietary Sugars/administration & dosage , Eating , Gastrointestinal Microbiome/physiology , Gene Expression , Prefrontal Cortex/metabolism , Social Behavior , Animals , Hippocampus/metabolism , Male , Rats, Sprague-Dawley
3.
Article in English | MEDLINE | ID: mdl-30559716

ABSTRACT

Background: It is well established that maternal exercise during pregnancy improves metabolic outcomes associated with obesity in mothers and offspring, however, its effects on the gut microbiota of both mother and offspring, are unknown. Here, we investigated whether wheel running exercise prior to and during pregnancy and prolonged feeding of an obesogenic diet were associated with changes in the gut microbiomes of Sprague-Dawley rat dams and their offspring. Female rats were fed either chow or obesogenic diet, and half of each diet group were given access to a running wheel 10 days before mating until delivery, while others remained sedentary. 16S rRNA gene amplicon sequencing was used to assess gut microbial communities in dams and their male and female offspring around the time of weaning. Results: Statistical analyses at the operational taxonomic unit (OTU) level revealed that maternal obesogenic diet decreased gut microbial alpha diversity and altered abundances of bacterial taxa previously associated with obesity such as Bacteroides and Blautia in dams, and their offspring of both sexes. Distance based linear modeling revealed that the relative abundances of Bacteroides OTUs were associated with adiposity measures in both dams and offspring. We identified no marked effects of maternal exercise on the gut microbiota of obesogenic diet dams or their offspring. In contrast, maternal exercise decreased gut microbial alpha diversity and altered the abundance of 88 microbial taxa in offspring of control dams. Thirty of these taxa were altered in a similar direction in offspring of sedentary obesogenic vs. control diet dams. In particular, the relative abundances of Oscillibacter OTUs were decreased in offspring of both exercised control dams and sedentary obesogenic diet dams, and associated with blood glucose concentrations and adiposity measures. Analyses of predicted bacterial metabolic pathways inferred decreased indole alkaloid biosynthesis in offspring of both obesogenic diet and exercised control dams. Conclusions: Our data suggest that maternal exercise prior to and during pregnancy resulted in gut dysbiosis in offspring of control dams. Importantly, alterations in the maternal gut microbiota by obesogenic diet or obesity were transferred to their offspring.

4.
eNeuro ; 5(1)2018.
Article in English | MEDLINE | ID: mdl-29464195

ABSTRACT

The amygdala is a critical substrate for learning about cues that signal danger. Less is known about its role in processing innocuous or background information. The present study addressed this question using a sensory preconditioning protocol in male rats. In each experiment, rats were exposed to pairings of two innocuous stimuli in stage 1, S2 and S1, and then to pairings of S1 and shock in stage 2. As a consequence of this training, control rats displayed defensive reactions (freezing) when tested with both S2 and S1. The freezing to S2 is a product of two associations formed in training: an S2-S1 association in stage 1 and an S1-shock association in stage 2. We examined the roles of two medial temporal lobe (MTL) structures in consolidation of the S2-S1 association: the perirhinal cortex (PRh) and basolateral complex of the amygdala (BLA). When the S2-S1 association formed in a safe context, its consolidation required neuronal activity in the PRh (but not BLA), including activation of AMPA receptors and MAPK signaling. In contrast, when the S2-S1 association formed in a dangerous context, or when the context was rendered dangerous immediately after the association had formed, its consolidation required neuronal activity in the BLA (but not PRh), including activation of AMPA receptors and MAPK signaling. These roles of the PRh and BLA show that danger changes the way the mammalian brain stores information about innocuous events. They are discussed with respect to danger-induced changes in stimulus processing.


Subject(s)
Association Learning/physiology , Basolateral Nuclear Complex/physiology , Fear/physiology , Memory Consolidation/physiology , Perirhinal Cortex/physiology , Animals , Association Learning/drug effects , Basolateral Nuclear Complex/drug effects , Conditioning, Psychological/drug effects , Conditioning, Psychological/physiology , Fear/drug effects , Freezing Reaction, Cataleptic/drug effects , Freezing Reaction, Cataleptic/physiology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Male , Memory Consolidation/drug effects , Perirhinal Cortex/drug effects , Random Allocation , Rats, Sprague-Dawley , Receptors, AMPA/metabolism
5.
Mol Nutr Food Res ; 61(1)2017 01.
Article in English | MEDLINE | ID: mdl-26767716

ABSTRACT

SCOPE: Overconsumption of energy-rich food is a major contributor to the obesity epidemic. The eating habits of many people are characterized by the cycling between overconsumption of energy-rich foods and dieting, the effects of which on the microbiota are currently unknown. METHODS AND RESULTS: We compared the fecal microbiota of rats either continuously fed chow or palatable cafeteria diet to a "cycled" group switched between the two diets (chow for 4, cafeteria for 3 days/wk, n = 12/group) over 16 wk. Enriched bacterial metabolic pathways were predicted, and a range of metabolic parameters was correlated to microbial taxa and pathways. Cycled rats showed large excursions in food intake on each diet switch. When switched from chow to cafeteria, they overconsumed, and when switched back to chow they underconsumed relative to those maintained on the two diets. Metabolic parameters of cycled rats were intermediate between those of the other diet groups (p < 0.05). The microbiota of cycled rats was nearly indistinguishable from rats under constant cafeteria diet, and both groups were significantly different to the chow group. Correlation analyses identified microbial metabolic pathways associated with an obese phenotype. CONCLUSION: These data suggest that continuous or intermittent exposure to palatable foods have similar effects on the gut microbiota.


Subject(s)
Diet , Gastrointestinal Microbiome , Obesity/microbiology , Adipose Tissue , Animals , Diet, Western , Eating , Feeding Behavior , Gastrointestinal Microbiome/genetics , Insulin/blood , Leptin/blood , Male , Metagenomics/methods , Obesity/etiology , Rats, Sprague-Dawley
6.
PLoS One ; 10(5): e0126931, 2015.
Article in English | MEDLINE | ID: mdl-25992554

ABSTRACT

The gut microbiota is emerging as a new factor in the development of obesity. Many studies have described changes in microbiota composition in response to obesity and high fat diet (HFD) at the phylum level. In this study we used 16s RNA high throughput sequencing on faecal samples from rats chronically fed HFD or control chow (n = 10 per group, 16 weeks) to investigate changes in gut microbiota composition at the species level. 53.17% dissimilarity between groups was observed at the species level. Lactobacillus intestinalis dominated the microbiota in rats under the chow diet. However this species was considerably less abundant in rats fed HFD (P<0.0001), this being compensated by an increase in abundance of propionate/acetate producing species. To further understand the influence of these species on the development of the obese phenotype, we correlated their abundance with metabolic parameters associated with obesity. Of the taxa contributing the most to dissimilarity between groups, 10 presented significant correlations with at least one of the tested parameters, three of them correlated positively with all metabolic parameters: Phascolarctobacterium, Proteus mirabilis and Veillonellaceae, all propionate/acetate producers. Lactobacillus intestinalis was the only species whose abundance was negatively correlated with change in body weight and fat mass. This species decreased drastically in response to HFD, favouring propionate/acetate producing bacterial species whose abundance was strongly correlated with adiposity and deterioration of metabolic factors. Our observations suggest that these species may play a key role in the development of obesity in response to a HFD.


Subject(s)
Diet, High-Fat , Energy Metabolism , Gastrointestinal Microbiome , Obesity/etiology , Obesity/metabolism , Animals , Biodiversity , Biomarkers , Body Weight , Diet , Glucose/metabolism , Insulin/metabolism , Male , Metagenome , Obesity/blood , Rats
7.
PLoS One ; 10(4): e0120980, 2015.
Article in English | MEDLINE | ID: mdl-25853572

ABSTRACT

Obesity during pregnancy contributes to the development of metabolic disorders in offspring. Maternal exercise may limit gestational weight gain and ameliorate these programming effects. We previously showed benefits of post-weaning voluntary exercise in offspring from obese dams. Here we examined whether voluntary exercise during pregnancy influences lipid and glucose homeostasis in muscle and fat in offspring of both lean and obese dams. Female Sprague-Dawley rats were fed chow (C) or high fat (F) diet for 6 weeks before mating. Half underwent voluntary exercise (CE/FE) with a running wheel introduced 10 days prior to mating and available until the dams delivered; others remained sedentary (CS/FS). Male and female pups were killed at postnatal day (PND)19 and retroperitoneal fat and gastrocnemius muscle were collected for gene expression. Lean and obese dams achieved similar modest levels of exercise. At PND1, both male and female pups from exercised lean dams were significantly lighter (CE versus CS), with no effect in those from obese dams. At PND19, maternal obesity significantly increased offspring body weight and adiposity, with no effect of maternal exercise. Exercise significantly reduced insulin concentrations in males (CE/FE versus CS/FS), with reduced glucose in male FE pups. In males, maternal obesity significantly decreased muscle myogenic differentiation 1 (MYOD1) and glucose transporter type 4 (GLUT4) mRNA expressions (FS vs CS); these were normalized by exercise. Maternal exercise upregulated adipose GLUT4, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC1α) mRNA expression in offspring of dams consuming chow. Modest voluntary exercise during pregnancy was associated with lower birth weight in pups from lean dams. Maternal exercise appeared to decrease the metabolic risk induced by maternal obesity, improving insulin/glucose metabolism, with greater effects in male than female offspring.


Subject(s)
Adipose Tissue/metabolism , Diet , Glucose/metabolism , Mothers , Muscle, Skeletal/metabolism , Physical Conditioning, Animal , Weaning , Adipose Tissue, White/metabolism , Animals , Biomarkers/blood , Biomarkers/metabolism , Female , Gene Expression Regulation , Hormones/blood , Insulin/blood , Male , Obesity/physiopathology , Organ Size , Phenotype , Pregnancy , Rats , Rats, Sprague-Dawley , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...