Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Appl Physiol (1985) ; 136(4): 954-965, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38482578

ABSTRACT

Whether eccentric exercise involves active fascicle stretch is unclear due to muscle-tendon unit (MTU) series compliance. Therefore, this study investigated the impact of changing the activation timing and level (i.e., preactivation) of the contraction on muscle fascicle kinematics and kinetics of the human tibialis anterior during dynamometer-controlled maximal voluntary MTU-stretch-hold contractions. B-mode ultrasound and surface electromyography were used to assess muscle fascicle kinematics and muscle activity levels, respectively. Although joint kinematics were similar among MTU-stretch-hold contractions (∼40° rotation amplitude), increasing preactivation increased fascicle shortening and stretch amplitudes (9.9-23.2 mm, P ≤ 0.015). This led to increasing positive and negative fascicle work with increasing preactivation. Despite significantly different fascicle kinematics, similar peak fascicle forces during stretch occurred at similar fascicle lengths and joint angles regardless of preactivation. Similarly, residual force enhancement (rFE) following MTU stretch was not significantly affected (6.5-7.6%, P = 0.559) by preactivation, but rFE was strongly correlated with peak fascicle force during stretch (rrm = 0.62, P = 0.003). These findings highlight that apparent eccentric exercise causes shortening-stretch contractions at the fascicle level rather than isolated eccentric contractions. The constant rFE despite different fascicle kinematics and kinetics suggests that a passive element was engaged at a common muscle length among conditions (e.g., optimal fascicle length). Although it remains unclear whether different fascicle mechanics trigger different adaptations to eccentric exercise, this study emphasizes the need to consider MTU series compliance to better understand the mechanical drivers of adaptation to exercise.NEW & NOTEWORTHY Apparent eccentric exercises do not result in isolated eccentric contractions, but shortening-stretch contractions at the fascicle level. The amount of fascicle shortening and stretch depends on the preactivation during the exercise and cannot be estimated from the muscle-tendon unit (MTU) or joint kinematics. As different fascicle mechanics might trigger different adaptations to eccentric exercise, muscle-tendon unit series compliance and muscle preactivation need to be considered when eccentric exercise protocols are designed.


Subject(s)
Muscle, Skeletal , Tendons , Humans , Muscle, Skeletal/physiology , Tendons/physiology , Muscle Contraction/physiology , Electromyography , Exercise , Isometric Contraction/physiology
2.
J Physiol ; 602(6): 1085-1103, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38380985

ABSTRACT

Residual force depression (rFD) following active muscle shortening is assumed to correlate most strongly with muscle work, but this has not been tested during voluntary contractions in humans. Using dynamometry, we compared steady-state ankle joint torques (N = 16) following tibialis anterior (TA) muscle-tendon unit (MTU) lengthening and shortening to the time-matched torque during submaximal voluntary fixed-end dorsiflexion reference contractions (REF) at a matched MTU length and EMG amplitude. Ultrasound revealed significantly reduced (P < 0.001) TA fascicle shortening amplitudes during MTU lengthening without a preload over small and medium amplitudes, respectively, relative to REF. MTU lengthening with a preload over a large amplitude significantly (P < 0.001) increased fascicle shortening relative to REF, as well as stretch amplitudes relative to MTU lengthening without a preload (P = 0.001). Significant (P = 0.028) steady-state fascicle force enhancement relative to REF was observed following MTU lengthening, and was similar among MTU lengthening-hold conditions (3-5%). MTU shortening with and without a preload over small and large amplitudes significantly (P < 0.001) increased positive fascicle and MTU work relative to REF, but significant (P = 0.006) rFD was observed following MTU shortening with a preload (7-10%) only. rFD was linearly related to positive MTU work [rrm (47) = 0.48, P < 0.001], but not positive fascicle work [rrm (47) = 0.16, P = 0.277]. Our findings indicate that MTU lengthening without substantial fascicle stretch enhances steady-state force output, which might arise from less shortening-induced rFD. Our findings also indicate similar rFD following different amounts of positive fascicle/MTU work, which cautions against using work to predict rFD during submaximal voluntary contractions. KEY POINTS: Accurately predicting muscle force is challenging because active muscle shortening depresses force output. The residual force depression (rFD) that exists following active muscle shortening is commonly assumed to correlate strongly and positively with muscle work. We found that tibialis anterior muscle fascicle work and muscle-tendon unit work did not accurately predict rFD during submaximal voluntary dorsiflexion contractions. Fascicle shortening during fixed-end reference contractions also potentially induced rFD of 3-5%, which was similar to the rFD following muscle-tendon unit shortening without a preload. A higher number of active muscle fibres during shortening probably increased rFD, which suggests that motor unit recruitment during shortening might predict rFD.


Subject(s)
Depression , Muscle, Skeletal , Humans , Muscle, Skeletal/physiology , Tendons/physiology , Muscle Fibers, Skeletal , Ankle Joint , Muscle Contraction/physiology , Isometric Contraction/physiology , Electromyography
3.
PeerJ ; 11: e15693, 2023.
Article in English | MEDLINE | ID: mdl-37461407

ABSTRACT

Background: Knowledge of the muscle's lengths at which maximum active isometric force is attained is important for predicting forces during movement. However, there is limited information about the in vivo force-length properties of a human muscle that plays crucial roles during locomotion; the tibialis anterior (TA). We therefore aimed to estimate TA's force-length relation from dorsiflexor torque-angle curves constructed from eight women and eight men. Methods: Participants performed maximal voluntary fixed-end contractions with their right ankle dorsiflexors from 0° to 30° plantar flexion. Muscle fascicle lengths were estimated from B-mode ultrasound images, and net ankle joint torques were measured using dynamometry. Fascicle forces were estimated by dividing maximal active torques by literature-derived, angle-specific tendon moment arm lengths while assuming a fixed 50% force contribution of TA to the total dorsiflexor force and accounting for fascicle angles. Results: Maximal active torques were higher at 15° than 20° and 30° plantar flexion (2.4-6.4 Nm, p ≤ 0.012), whereas maximal active TA fascicle forces were higher at 15° than 0°, 20° and 30° plantar flexion (25-61 N, p ≤ 0.042), but not different between 15° and 10° plantar flexion (15 N, p = 0.277). TA fascicle shortening magnitudes during fixed-end contractions were larger at 15° than 30° plantar flexion (3.9 mm, p = 0.012), but less at 15° than 0° plantar flexion (-2.4 mm, p = 0.001), with no significant differences (≤0.7 mm, p = 0.871) between TA's superficial and deep muscle compartments. Series elastic element stiffness was lowest and highest at lengths 5% shorter and 5% longer than optimum fascicle length, respectively (-30 and 15 N/mm, p ≤ 0.003). Discussion: TA produced its maximum active force at 10-15° plantar flexion, and its normalized force-length relation had ascending and descending limbs that agreed with a simple scaled sarcomere model when active fascicle lengths from within TA's superficial or deep muscle compartment were considered. These findings can be used to inform the properties of the contractile and series elastic elements of Hill-type muscle models.


Subject(s)
Isometric Contraction , Muscle, Skeletal , Male , Humans , Female , Young Adult , Isometric Contraction/physiology , Muscle, Skeletal/diagnostic imaging , Tendons/physiology , Muscle Contraction/physiology , Ankle Joint/diagnostic imaging
5.
Eur J Sport Sci ; 23(9): 1940-1949, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36043353

ABSTRACT

A rowing cycle is characterised by a stretch-shortening cycle (SSC) at the quadriceps femoris muscle-tendon unit (MTU) level. However, due to the associated decoupling between MTU and muscle fascicle length changes, it remains unclear whether a rowing cycle causes active stretch at the muscle level. Fifteen young, sub-elite, male rowers (19.5 ± 1.6 yr; 1.94 ± 0.06 m; 91.9 ± 5.4 kg; rowing experience: 7.5 ± 2.8 yr) performed randomised 60-s rowing intervals using a traditional style at a low (LiR) and high intensity (HiR) and a micro-pause style at a low intensity (MpR). Muscle activity, knee joint angles, and muscle fascicle length changes from the left-sided vastus lateralis (VL) muscle were quantified using surface electromyography, inertial measurement units, and B-mode ultrasound imaging, respectively. All rowing conditions showed active fascicle stretch during late knee flexion (p≤0.001, standardised mean difference (SMD) ≥0.72) and subsequent active fascicle shortening throughout knee extension. Active fascicle stretch duration, amplitude and velocity (rANOVA: p≤0.001, ηp2 = 0.49) were not significantly different (p≥0.174; SMD≤0.26) between LiR and MpR, but were significantly increased during HiR (p≤0.001; SMD≥0.70). The percentage of rowing cycles that involved active fascicle stretch (rANOVA: p≤0.001, ηp2 = 0.95; post-hoc: p≤0.001, SMD≥0.87) was also significantly higher for HiR (98.3 ±12.9%) compared with both LiR (65.0 ± 48.1%) and MpR (68.3 ± 46.9%). In conclusion, rowing involves SSC at the VL muscle fascicle level, but the amount of active stretch differs between rowing intensities, with the longest, largest, and fastest active stretch occurring during HiR. SSC-based mechanisms may therefore contribute more to rowing performance during HiR than LiR or MpR.HighlightsSurface electromyography and ultrasound imaging revealed stretch-shortening cycles (SSCs) of the vastus lateralis muscle fascicles during rowingIncreased active fascicle stretch duration, amplitude and velocity from low- to high-intensity rowing indicate that SSC-based mechanisms likely contribute more to performance during high-intensity rowingThe SSC within the vastus lateralis muscle was independent of the rowing style at the same low rowing intensity.


Subject(s)
Quadriceps Muscle , Water Sports , Humans , Male , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/physiology , Electromyography , Muscle Contraction/physiology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Ultrasonography
6.
J Biomech ; 142: 111261, 2022 09.
Article in English | MEDLINE | ID: mdl-36027634

ABSTRACT

A muscle's contractile element length relative to its muscle-tendon unit (MTU) length is a fundamental design feature affecting MTU function, with high (0.9) or low ratios (0.1) favouring either rapid or economical force production, respectively. Despite the importance for MTU function, little in vivo work has been done to understand contractile element-MTU length ratio variability between individuals and sexes. We therefore compared the medial gastrocnemius (MG) MTU ratios of thirteen females and eighteen males, and explored whether individual ratios could be predicted based on anatomical features. At the presumed tendon slack length ankle joint angle, lengths of MG's MTU, Achilles tendon, muscle belly and its muscle fascicles were measured from B-mode ultrasound images. Contractile element length was represented by the in-series muscle fascicle length (FL) and was calculated by multiplying FL by the cosine of fascicle angle. The mean ± standard deviation in-series FL-MTU length ratio was 0.09 ± 0.02 and ranged from 0.06 to 0.11, whereas the muscle belly length-MTU length ratio was 0.54 ± 0.38 and ranged from 0.47 to 0.60. Neither ratio was significantly different between females and males (p ≥ 0.116). In-series FL was not significantly correlated with MTU length (r = -0.115, p =.538), muscle belly length (r = 0.05, p =.788), or shank length (r = 0.169, p =.364), but MTU length was significantly correlated with muscle belly length (r = 0.641, p <.001), and shank length (r = 0.575, p =.001). A low in-series FL-MTU length ratio suggests that the MG of young, healthy individuals is specialised for energy-efficient stretch-shortening cycles. These findings provide useful inputs for the MTU actuator design of Hill-type models.


Subject(s)
Achilles Tendon , Muscle, Skeletal , Achilles Tendon/diagnostic imaging , Achilles Tendon/physiology , Ankle Joint/diagnostic imaging , Ankle Joint/physiology , Female , Humans , Leg , Male , Muscle Contraction/physiology , Muscle, Skeletal/physiology
7.
Scand J Med Sci Sports ; 32(10): 1464-1476, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35844051

ABSTRACT

Combined heavy- and light-load ballistic training is often employed in high-performance sport to improve athletic performance and is accompanied by adaptations in muscle architecture. However, little is known about how training affects muscle-tendon unit (MTU) kinematics during the execution of a sport-specific skill (e.g., jumping), which could improve our understanding of how training improves athletic performance. The aim of this study was to investigate vastus lateralis (VL) MTU kinematics during a countermovement jump (CMJ) following combined ballistic training. Eighteen young, healthy males completed a 10-week program consisting of weightlifting derivatives, plyometrics, and ballistic tasks under a range of loads. Ultrasonography of VL and force plate measurements during a CMJ were taken at baseline, mid-test, and post-test. The training program improved CMJ height by 11 ± 13%. During the CMJ, VL's MTU and series elastic element (SEE) length changes and velocities increased from baseline to post-test, but VL's fascicle length change and velocity did not significantly change. It is speculated that altered lower limb coordination and increased force output of the lower limb muscles during the CMJ allowed more energy to be stored within VL's SEE. This may have contributed to enhanced VL MTU work during the propulsion phase and an improved CMJ performance following combined ballistic training.


Subject(s)
Athletic Performance , Muscle Strength , Athletic Performance/physiology , Biomechanical Phenomena , Humans , Male , Muscle Strength/physiology , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Quadriceps Muscle , Tendons/diagnostic imaging , Tendons/physiology
8.
Elife ; 112022 05 17.
Article in English | MEDLINE | ID: mdl-35579415

ABSTRACT

Little is known about how muscle length affects residual force enhancement (rFE) in humans. We therefore investigated rFE at short, long, and very long muscle lengths within the human quadriceps and patellar tendon (PT) using conventional dynamometry with motion capture (rFETQ) and a new, non-invasive shear-wave tensiometry technique (rFEWS). Eleven healthy male participants performed submaximal (50% max.) EMG-matched fixed-end reference and stretch-hold contractions across these muscle lengths while muscle fascicle length changes of the vastus lateralis (VL) were captured using B-mode ultrasound. We found significant rFETQ at long (7±5%) and very long (12±8%), but not short (2±5%) muscle lengths, whereas rFEWS was only significant at the very long (38±27%), but not short (8±12%) or long (6±10%) muscle lengths. We also found significant relationships between VL fascicle length and rFETQ (r=0.63, p=0.001) and rFEWS (r=0.52, p=0.017), but relationships were not significant between VL fascicle stretch amplitude and rFETQ (r=0.33, p=0.126) or rFEWS (r=0.29, p=0.201). Squared PT shear-wave-speed-angle relationships did not agree with estimated PT force-angle relationships, which indicates that estimating PT loads from shear-wave tensiometry might be inaccurate. We conclude that increasing muscle length rather than stretch amplitude contributes more to rFE during submaximal voluntary contractions of the human quadriceps.


Subject(s)
Isometric Contraction , Quadriceps Muscle , Electromyography , Gravitation , Humans , Isometric Contraction/physiology , Male , Muscle Contraction , Muscle, Skeletal/physiology , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/physiology , Ultrasonography
9.
PeerJ ; 10: e12729, 2022.
Article in English | MEDLINE | ID: mdl-35036100

ABSTRACT

BACKGROUND: Following stretch of an active muscle, muscle force is enhanced, which is known as residual force enhancement (rFE). As earlier studies found apparent corticospinal excitability modulations in the presence of rFE, this study aimed to test whether corticospinal excitability modulations contribute to rFE. METHODS: Fourteen participants performed submaximal plantar flexion stretch-hold and fixed-end contractions at 30% of their maximal voluntary soleus muscle activity in a dynamometer. During the steady state of the contractions, participants either received subthreshold or suprathreshold transcranial magnetic stimulation (TMS) of their motor cortex, while triceps surae muscle responses to stimulation were obtained via electromyography (EMG), and net ankle joint torque was recorded. B-mode ultrasound imaging was used to confirm muscle fascicle stretch during stretch-hold contractions in a subset of participants. RESULTS: Following stretch of the plantar flexors, an average rFE of 7% and 11% was observed for contractions with subthreshold and suprathreshold TMS, respectively. 41-46 ms following subthreshold TMS, triceps surae muscle activity was suppressed by 19-25%, but suppression was not significantly different between stretch-hold and fixed-end contractions. Similarly, the reduction in plantar flexion torque following subthreshold TMS was not significantly different between contraction conditions. Motor evoked potentials, silent periods and superimposed twitches following suprathreshold TMS were also not significantly different between contraction conditions. DISCUSSION: As TMS of the motor cortex did not result in any differences between stretch-hold and fixed-end contractions, we conclude that rFE is not linked to changes in corticospinal excitability.


Subject(s)
Isometric Contraction , Muscle, Skeletal , Humans , Isometric Contraction/physiology , Torque , Muscle, Skeletal/physiology , Electromyography/methods , Mechanical Phenomena
10.
Front Sports Act Living ; 3: 669813, 2021.
Article in English | MEDLINE | ID: mdl-34179775

ABSTRACT

Current debate exists around whether a presumed eccentric exercise, the Nordic hamstring exercise (NHE), actually causes active hamstring muscle lengthening. This is because of the decoupling that can occur between the muscle fascicle and muscle-tendon unit (MTU) length changes in relatively compliant human lower-limb MTUs, which results in MTU lengthening not necessarily causing muscle fascicle lengthening. This missing knowledge complicates the interpretation of why the NHE is effective at reducing running-related hamstring muscle injury risk in athletes previously unfamiliar with performing this exercise. The purpose of the study was therefore to investigate if the most-commonly injured hamstring muscle, the biceps femoris long head (BF), exhibits active muscle lengthening (i.e. an eccentric muscle action) during the NHE up until peak force in Nordic novices. External reaction force at the ankle, knee flexion angle, and BF and semitendinosus muscle activities were recorded from the left leg of 14 participants during the NHE. Simultaneously, BF muscle architecture was imaged using B-mode ultrasound imaging, and muscle architecture changes were tracked using two different tracking algorithms. From ~85 to 100% of peak NHE force, both tracking algorithms detected that BF muscle fascicles (n = 10) significantly lengthened (p < 0.01) and had a mean positive lengthening velocity (p ≤ 0.02), while knee extension velocity remained positive (17°·s-1) over knee flexion angles from 53 to 37° and a duration of 1.6 s. Despite some individual cases of brief isometric fascicle behavior and brief fascicle shortening during BF MTU lengthening, the predominant muscle action was eccentric under a relatively high muscle activity level (59% of maximum). Eccentric hamstring muscle action therefore does occur during the NHE in relatively strong (429 N) Nordic novices, which might contribute to the increase in resting BF muscle fascicle length and reduction in running-related injury risk, which have previously been reported following NHE training. Whether an eccentric BF muscle action occurs in individuals accustomed to the NHE remains to be tested.

11.
J Physiol ; 599(11): 2987, 2021 06.
Article in English | MEDLINE | ID: mdl-33963768
12.
J Exp Biol ; 224(Pt 1)2021 01 12.
Article in English | MEDLINE | ID: mdl-33257433

ABSTRACT

Much of our understanding of in vivo skeletal muscle properties is based on studies performed under maximal activation, which is problematic because muscles are rarely activated maximally during movements such as walking. Currently, force-length properties of the human triceps surae at submaximal voluntary muscle activity levels are not characterized. We therefore evaluated plantar flexor torque- and force-ankle angle, and torque- and force-fascicle length properties of the soleus and lateral gastrocnemius muscles during voluntary contractions at three activity levels: 100, 30 and 22% of maximal voluntary contraction. Soleus activity levels were controlled by participants via real-time electromyography feedback and contractions were performed at ankle angles ranging from 10 deg plantar flexion to 35 deg dorsiflexion. Using dynamometry and ultrasound imaging, torque-fascicle length curves of the soleus and lateral gastrocnemius muscles were constructed. The results indicate that small muscle activity reductions shift the torque- and force-angle, and torque- and force-fascicle length curves of these muscles to more dorsiflexed ankle angles and longer fascicle lengths (from 3 to 20% optimal fascicle length, depending on ankle angle). The shift in the torque- and force-fascicle length curves during submaximal voluntary contraction have potential implications for human locomotion (e.g. walking) as the operating range of fascicles shifts to the ascending limb, where muscle force capacity is reduced by at least 15%. These data demonstrate the need to match activity levels during construction of the torque- and force-fascicle length curves to activity levels achieved during movement to better characterize the lengths that muscles operate at relative to their optimum during a specific task.


Subject(s)
Isometric Contraction , Muscle Contraction , Ankle Joint , Electromyography , Humans , Muscle, Skeletal , Torque
13.
Eur J Appl Physiol ; 120(12): 2597-2610, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32892321

ABSTRACT

PURPOSE: Force enhancement is the phenomenon of increased forces during (transient force enhancement; tFE) and after (residual force enhancement; rFE) eccentric muscle actions compared with fixed-end contractions. Although tFE and rFE have been observed at short and long muscle lengths, whether both are length-dependent remains unclear in vivo. METHODS: We determined maximal-effort vastus lateralis (VL) force-angle relationships of eleven healthy males and selected one knee joint angle at a short and long muscle lengths where VL produced approximately the same force (85% of maximum). We then examined tFE and rFE at these two lengths during and following the same amount of knee joint rotation. RESULTS: We found tFE at both short (11.7%, P = 0.017) and long (15.2%, P = 0.001) muscle lengths. rFE was only observed at the long (10.6%, P < 0.001; short: 1.3%, P = 0.439) muscle length. Ultrasound imaging revealed that VL muscle fascicle stretch magnitude was greater at long compared with short muscle lengths (mean difference: (tFE) 1.7 mm, (rFE) 1.9 mm, P ≤ 0.046), despite similar isometric VL forces across lengths (P ≥ 0.923). Greater fascicle stretch magnitude was likely to be due to greater preload forces at the long compared with short muscle length (P ≤ 0.001). CONCLUSION: At a similar isometric VL force capacity, tFE was not muscle-length-dependent at the lengths we tested, whereas rFE was greater at longer muscle length. We speculate that the in vivo mechanical factors affecting tFE and rFE are different and that greater stretch of a passive component is likely contributing more to rFE at longer muscle lengths.


Subject(s)
Isometric Contraction/physiology , Quadriceps Muscle/physiology , Adult , Humans , Knee Joint/physiology , Male
14.
Med Sci Sports Exerc ; 52(1): 233-243, 2020 01.
Article in English | MEDLINE | ID: mdl-31403609

ABSTRACT

PURPOSE: This study aimed to compare biceps femoris long head (BFlh) fascicle length (Lf) obtained with different ultrasound-based approaches: 1) single ultrasound images and linear Lf extrapolation, 2) single ultrasound images and one of two different trigonometric equations (termed equations A and B), and 3) extended field of view (EFOV) ultrasound images. METHODS: Thirty-seven elite alpine skiers (21.7 ± 2.8 yr) without a previous history of hamstring strain injury were tested. Single ultrasound images were collected with a 5-cm linear transducer from BFlh at 50% femur length and were compared with whole muscle scans acquired by EFOV ultrasound. RESULTS: The intrasession reliability (intraclass correlation coefficient [ICC3,k]) of Lf measurements was very high for both single ultrasound images (i.e., Lf estimated by linear extrapolation; ICC3,k = 0.96-0.99, SEM = 0.18 cm) and EFOV scans (ICC3,k = 0.91-0.98, SEM = 0.19 cm). Although extrapolation methods showed cases of Lf overestimation and underestimation when compared with EFOV scans, mean Lf measured from EFOV scans (8.07 ± 1.36 cm) was significantly shorter than Lf estimated by trigonometric equations A (9.98 ± 2.12 cm, P < 0.01) and B (8.57 ± 1.59 cm, P = 0.03), but not significantly different from Lf estimated with manual linear extrapolation (8.40 ± 1.68 cm, P = 0.13). Bland-Altman analyses revealed mean differences in Lf obtained from EFOV scans and those estimated from equation A, equation B, and manual linear extrapolation of 1.91 ± 2.1, 0.50 ± 1.0, and 0.33 ± 1.0 cm, respectively. CONCLUSIONS: The typical extrapolation methods used for estimating Lf from single ultrasound images are reliable within the same session, but not accurate for estimating BFlh Lf at rest with a 5-cm field of view. We recommend that EFOV scans are implemented to accurately determine intervention-related Lf changes in BFlh.


Subject(s)
Hamstring Muscles/anatomy & histology , Hamstring Muscles/diagnostic imaging , Female , Hamstring Muscles/injuries , Humans , Male , Reproducibility of Results , Risk Factors , Skiing/injuries , Skiing/physiology , Ultrasonography/methods , Young Adult
17.
J Biomech ; 86: 225-231, 2019 03 27.
Article in English | MEDLINE | ID: mdl-30736963

ABSTRACT

In vivo muscle forces are typically estimated using literature-based or subject-specific moment arms (MAs) because it is not possible to measure in vivo muscle forces non-invasively. However, even subject-specific muscle-tendon MAs vary across contraction levels and are impossible to determine at high contraction levels without techniques that use ionized radiation. Therefore, different generic MA functions are often used to estimate in vivo muscle forces, which may alter force predictions and the shape of the muscle's force-length relationship. The aim of this study was to examine the influence of different literature-based patella tendon MA functions on the vastus lateralis (VL) force-angle relationship. Participants (n = 11) performed maximum voluntary isometric knee extension contractions at six knee flexion angles, ranging from 40° to 90°. To estimate in vivo VL muscle force, the peak knee extension torque at each joint angle was multiplied by the VL's physiological cross-sectional area (PCSA) relative to the quadriceps' PCSA (34%) and then divided by the angle-specific patella tendon MA for 19 different functions. Maximum VL force was significantly different across MA functions (p ≤ 0.039) and occurred at different knee flexion angles. The shape of the VL force-angle relationship also differed significantly (p < 0.01) across MA functions. According to the maximum force generated by VL based on its literature-derived PSCA, only the VL force-angle relationships estimated using geometric imaging-based MA functions are feasible across the knee angles studied here. We therefore recommend that an average of these MA functions is calculated to estimate quadriceps muscle forces if subject-specific MAs cannot be determined.


Subject(s)
Biophysical Phenomena/physiology , Patellar Ligament/physiology , Quadriceps Muscle/physiology , Adult , Female , Humans , Isometric Contraction/physiology , Knee Joint/physiology , Male , Muscle, Skeletal/physiology , Torque
18.
Acta Physiol (Oxf) ; 225(3): e13198, 2019 03.
Article in English | MEDLINE | ID: mdl-30300958

ABSTRACT

AIM: We investigated if residual force depression (rFD) is present during voluntary fixed-end contractions of human tibialis anterior (TA) and whether reducing TA's activation level after active shortening could reduce rFD. METHODS: Ten participants performed fixed-end dorsiflexion contractions to a low, moderate or high level while electromyography (EMG), dorsiflexion force and TA ultrasound images were recorded. Contractions were force- or EMG-matched and after the low or high contraction level was attained, participants respectively increased or decreased their force/EMG to a moderate level. Participants also performed moderate level contractions while the TA muscle-tendon unit (MTU) was lengthened during the force/EMG rise to the reference MTU length. RESULTS: Equivalent fascicle shortening over moderate and low to moderate level contractions did not alter EMG (P = 0.45) or dorsiflexion force (P = 0.47) at the moderate level. Greater initial fascicle shortening magnitudes (1.7 mm; P ≤ 0.01) to the high contraction level did not alter EMG (P = 0.45) or dorsiflexion force (P = 0.30) at the subsequent moderate level compared with moderate level contractions. TA MTU lengthening during the initial force/EMG rise reduced TA fascicle shortening (-2.5 mm; P ≤ 0.01), which reduced EMG (-3.9% MVC; P < 0.01) and increased dorsiflexion force (3.7% MVC; P < 0.01) at the moderate level compared with fixed-end moderate level contractions. CONCLUSION: rFD is present during fixed-end dorsiflexion contractions because fascicles actively shorten as force/EMG increases and rFD can be reduced by reducing the effective MTU compliance. A reduction in muscle activation level also reduces rFD by potentially triggering residual force enhancement-related mechanisms as force drops and some fascicles actively lengthen.


Subject(s)
Depression/physiopathology , Isometric Contraction/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiopathology , Adult , Electromyography/methods , Humans , Male , Tendons/physiology , Ultrasonography/methods
19.
Ultrasound Med Biol ; 44(12): 2492-2504, 2018 12.
Article in English | MEDLINE | ID: mdl-30185385

ABSTRACT

Skeletal muscle structural assembly (and its remodeling in response to loading-unloading states) can be investigated macroscopically by assessing muscle architecture, described as fascicle geometric disposition within the muscle. Over recent decades, various medical imaging techniques have been developed to facilitate the in vivo assessment of muscle architecture. However, the main advantages and limitations of these methodologies have been fragmentally discussed. In the present article, the main techniques used for the evaluation of muscle architecture are presented: conventional B-mode ultrasonography, extended-field-of-view ultrasound, 3-D ultrasound and magnetic resonance imaging-based diffusion tensor imaging. By critically discussing potentials and shortcomings of each methodology, we aim to provide readers with an overview of both established and new techniques for the in vivo assessment of muscle architecture. This review may serve as decision guidance facilitating selection of the appropriate technique to be applied in biomedical research or clinical routine.


Subject(s)
Diffusion Tensor Imaging/methods , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal/physiology , Ultrasonography/methods , Humans , Muscle Strength/physiology , Muscle, Skeletal/diagnostic imaging
20.
Eur J Sport Sci ; 18(8): 1128-1138, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29806988

ABSTRACT

There is an abundance of evidence that suggests elastic tendons can enhance both animal and human muscle performance. However, in many terrestrial animals, including humans, a large proportion of the elastic tissue within the muscle-tendon unit is located within the muscle. This continuous elastic sheet, which provides muscle fibre attachment, is known as the aponeurosis. The aponeurosis has a much more complicated shape than the free tendon and it undergoes a more complicated loading regime during contraction, due to its relationship with the bulging muscle fibres, which remain isovolumetric during force production. Muscle contraction may dynamically modulate the stiffness of the aponeurosis at the same active versus passive force, by increasing the intramuscular pressure and transverse forces within the muscle, which may stretch the aponeurosis in width and subsequently reduce its longitudinal strain. Some evidence also suggests that the aponeurosis mechanical properties may be affected by muscle length, which appears to reduce the fascicle strains for a given muscle force at longer muscle lengths. This narrative review outlines the animal and human studies that have investigated aponeurosis behaviour during contraction and discusses how an elastic sheet with a variable stiffness under activation might be beneficial for muscle performance. While it is clear that our understanding of the role of aponeurosis is lacking, it is hoped that further work will attempt to determine how this tissue contributes to power amplification and elastic energy savings during locomotion and potentially uncover how aponeurosis behaviour contributes to injury risk.


Subject(s)
Aponeurosis/physiology , Locomotion/physiology , Muscle Contraction , Muscle, Skeletal/physiology , Tendons/physiology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...