Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Org Biomol Chem ; 22(21): 4297-4308, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38717323

ABSTRACT

A three-component condensation of 2-unsubstituted imidazole N-oxides, 3-ketonitriles, and aldehydes is described. The reaction proceeds via sequential Knoevenagel condensation/Michael addition under mild, catalyst-free conditions with various substrates. Furthermore, the corresponding 2-functionalized imidazole N-oxides can be further dehydrated to (Z)-2-aroyl-3-(1H-imidazol-2-yl)-acrylonitriles, which may also be directly prepared by changing the reaction conditions as a cascade of Knoevenagel condensation/Michael addition/dehydration.

2.
J Chem Phys ; 150(13): 134301, 2019 Apr 07.
Article in English | MEDLINE | ID: mdl-30954040

ABSTRACT

Macrocyclic tetrapyrrolic compounds, such as naturally occurring or artificial porphyrins and phthalocyanines, have unique and highly attractive properties for applications in medicine and technology. The interaction of free-base phthalocyanine (H2Pc) and tetraphenylporphyrin (H2TPP) molecules with low-energy (0-15 eV) electrons was studied in vacuo by means of negative ion resonant electron capture mass spectrometry. Close similarities in formation and decay of negative ions of these compounds were revealed. Efficient formation of long-lived molecular negative ions (MNIs) was observed in the incident electron energy range of 0-8 eV, unprecedentedly wide for organic compounds and comparable to the range characteristic to carbon atomic clusters, fullerenes. Experiments testify to the strong persistence of MNIs of both compounds to dissociative decay, isomerization, and electron autodetachment. Lifetimes of MNIs as a function of incident electron energy were measured and it was concluded that the isolated anions may retain additional electrons in a time scale of up to hundreds of seconds at standard temperature due to the high adiabatic electron affinity of these large molecules. For the representatives of dyes and photochromic compounds comprehensively studied in terms of interaction with light, the present work highlights yet another unique property of these molecules, namely the capability to attach and durably retain an additional electron of low, pre-ionization energy.


Subject(s)
Indoles/chemistry , Porphyrins/chemistry , Quantum Theory , Electrons , Isoindoles , Models, Molecular , Molecular Conformation , Temperature
3.
Analyst ; 141(6): 1912-7, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26890271

ABSTRACT

Reusable surface plasmon resonance chips allowing the quantitative and selective detection of mercury(ii) ions in water at the 0.01 nM level are reported. The surface-modified gold sensor consists of a rarefied self-assembled monolayer of octanethiol topped with a Langmuir-Blodgett monolayer of an amphiphilic and highly-specific chelator. The interdigitated architecture confers to the bilayer a high packing density, surface coverage, and binding-group accessibility.

4.
J Phys Chem B ; 116(5): 1482-90, 2012 Feb 09.
Article in English | MEDLINE | ID: mdl-22214478

ABSTRACT

Two geometric isomers of oligothiophene derivatives containing two crowned styryl fragments in 2- or 3-positions of thiophene rings are able to form stable monolayers on the water subphase. The organizing of crown-containing oligothiophenes in monolayers is guided by the π-stacking interaction of hydrophobic styrylthiophene fragments and interaction of hydrophilic macrocycles with the water subphase. The difference in structure of oligothiophene molecules leads to the formation of distinct monolayer architectures with various electrochemical and optical characteristics.

5.
Langmuir ; 23(5): 2517-24, 2007 Feb 27.
Article in English | MEDLINE | ID: mdl-17263566

ABSTRACT

The sterically guided molecular recognition of nucleobases, phosphates, adenosine, and uridine nucleotides on Langmuir monolayers and Langmuir-Blodgett monolayers of amphiphilic mono- or bis(Zn2+-cyclen)s assembled on thiolated surfaces was investigated. The stepwise selective binding of metal ions, uracil, or phosphate by dicetyl cyclen monolayers with variously tuned structures at the air/water interface was corroborated by the measurements of the corresponding LB films deposited onto quartz crystals. Two types of recognition surfaces were fabricated from Zn2+-dicetyl cyclen. The surface covered with a complex preformed in the Langmuir monolayer was capable both of imide and of phosphate binding. The similar complex formed directly in an LB film on thiolated gold was inactive with respect to imide. The surface plasmon resonance measurements evidenced the stepwise assembly of complementary nucleotides on SAM/LB templates through consecutive phosphate-Zn2+-cyclen coordination. Base pairing between nucleotides resulted in a formation of A-U bilayers comprising two complementary monolayers. Finally, we report on SAM/LB patterns designed for divalent molecular recognition of uridine phosphate by amphiphilic bis(Zn2+-cyclen).


Subject(s)
Chemistry, Physical/methods , Uracil Nucleotides/chemistry , Zinc/chemistry , Adsorption , Crystallization , Ions , Models, Chemical , Nucleotides/chemistry , Phosphates/chemistry , Pressure , Quartz , Sulfhydryl Compounds , Surface Plasmon Resonance , Surface Properties , Time Factors
7.
Chem Commun (Camb) ; (17): 1936-7, 2002 Sep 07.
Article in English | MEDLINE | ID: mdl-12271682

ABSTRACT

A novel method to generate an integrated electrically contacted glucose dehydrogenase electrode by the surface reconstitution of the apo-enzyme on a pyrroloquinoline quinone (PQQ)-modified polyaniline is described. In situ electrochemical surface plasmon resonance (SPR) is used to characterize the bioelectrocatalytic functions of the system.


Subject(s)
Aniline Compounds/chemistry , Glucose Dehydrogenases/metabolism , Gold/chemistry , Quinolones/chemistry , Quinones/chemistry , Surface Plasmon Resonance , Apoenzymes/metabolism , Biosensing Techniques/methods , Catalysis , Electrochemistry , Electrodes , Glucose/metabolism , Glucose 1-Dehydrogenase , Molecular Structure , PQQ Cofactor
8.
Anal Chem ; 74(18): 4763-73, 2002 Sep 15.
Article in English | MEDLINE | ID: mdl-12349981

ABSTRACT

Impedance measurements on ISFET devices are employed to develop new immunosensors. The analysis of the transconductance curves recorded at variable frequencies, upon the formation of antigen-antibody complexes on the ISFET devices, allows determination of the biomaterial film thicknesses. Complementary surface plasmon resonance measurements of analogous biosensor systems, using Au-coated glass slides as support, reveal similar film thicknesses of the biomaterials and comparable detection limits. A dinitrophenyl antigen layer is immobilized on the ISFET gate as a sensing interface for the anti-dinitrophenyl antibody (anti-DNP-Ab). The anti-DNP-Ab is analyzed with a sensitivity that corresponds to 0.1 microg mL(-1). The assembly of the biotinylated anti-anti-DNP-Ab and avidin layers on the base anti-DNP-Ab layer is characterized by impedance measurements. The development of an ISFET-based sensor for the cholera toxin is described. The anti-cholera toxin antibody is immobilized on the ISFET device. The association of the cholera toxin (CT) to the antibody is monitored by the impedance measurements. The detection limit for analyzing CT is 1.0 x 10(-11) M.


Subject(s)
Antigen-Antibody Reactions , Cholera Toxin/analysis , Surface Plasmon Resonance/methods , Ions
9.
J Am Chem Soc ; 124(22): 6487-96, 2002 Jun 05.
Article in English | MEDLINE | ID: mdl-12033880

ABSTRACT

Electropolymerization of aniline in the presence of poly(acrylic acid) on Au electrodes yields a polyaniline/poly(acrylic acid) composite film, exhibiting reversible redox functions in aqueous solutions at pH = 7.0. In situ electrochemical-SPR measurements are used to identify the dynamics of swelling and shrinking of the polymer film upon the oxidation of the polyaniline (PAn) to its oxidized state (PAn(2+)) and the reduction of the oxidized polymer (PAn(2+)) back to its reduced state (PAn), respectively. Covalent attachment of N(6)-(2-aminoethyl)-flavin adenin dinucleotide (amino-FAD, 1) to the carboxylic groups of the composite polyaniline/poly(acrylic acid) film followed by the reconstitution of apoglucose oxidase on the functional polymer yields an electrically contacted glucose oxidase of unprecedented electrical communication efficiency with the electrode: electron-transfer turnover rate approximately 1000 s(-1) at 30 degrees C. In situ electrochemical-SPR analyses are used to characterize the bioelectrocatalytic functions of the biomaterial-polymer interface. The current responses of the bioelectrocatalytic system increase as the glucose concentrations are elevated. Similarly, the SPR spectra of the system are controlled by the concentration of glucose. The glucose concentration controls the steady-state concentration ratio of PAn/PAn(2+) in the film composition. Therefore, the SPR spectrum of the film measured upon its electrochemical oxidation is shifted from the spectrum typical for the oxidized PAn(2+) at low glucose concentration to the spectrum characteristic of the reduced PAn at high glucose concentration. Similarly, the polyaniline/poly(acrylic acid) film acts as an electrocatalyst for the oxidation of NADH. Accordingly, an integrated bioelectrocatalytic assembly was constructed on the electrode by the covalent attachment of N(6)-(2-aminoethyl)-beta-nicotinamide adenine dinucleotide (amino-NAD(+), 2) to the polymer film, and the two-dimensional cross-linking of an affinity complex formed between lactate dehydrogenase and the NAD(+)-cofactor units associated with the polymer using glutaric dialdehyde as a cross-linker. In situ electrochemical-SPR measurements are used to characterize the bioelectrocatalytic functions of the system. The amperometric responses of the system increase as the concentrations of lactate are elevated, and an electron-transfer turnover rate of 350 s(-1) between the biocatalyst and the electrode is estimated. As the PAn(2+) oxidizes the NADH units generated by the biocatalyzed oxidation of lactate, the PAn/PAn(2+) steady-state ratio in the film is controlled by the concentration of lactate. Accordingly, the SPR spectrum measured upon electrochemical oxidation of the film is similar to the spectrum of PAn(2+) at low lactate concentration, whereas the SPR spectrum resembles that of PAn at high concentrations of lactate.


Subject(s)
Acrylic Resins/chemistry , Aniline Compounds/chemistry , Glucose Oxidase/chemistry , Glucose/chemistry , L-Lactate Dehydrogenase/chemistry , Lactic Acid/chemistry , Electrodes , NAD/chemistry , Oxidation-Reduction , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...