Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Nutr ; 9(6): 3228-3239, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34136187

ABSTRACT

Miang, a Thai traditional fermented tea (Camellia sinensis var. assamica), is exploited as nutraceutical and cosmeceutical ingredients despite limited standardization studies. Thus, this research aimed to develop a simple and rapid method for miang quality control using catechin and high-performance thin-layer chromatography (HPTLC) validated according to the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) and the Association of Official Analytical Collaboration (AOAC). The developing solvent consisting of toluene: ethyl acetate: acetone: formic acid (6:6:6:1 v/v/v/v) showed acceptable specificity with R f value of 0.54 ± 0.02 and linearity with correlation coefficient of 0.9951. The recovery was 98.84%-103.53%, and the RSD of intra- and inter-day precision was 0.70%-3.00% and 1.93%-4.94%, respectively. Miang ethyl acetate fraction is suggested to be attractive ingredient due to rich catechin (25.78 ± 0.53%), prolonged stability at 40 ◦C, and strong antioxidants determined by the assays of ABTS (IC50 = 3.32 ± 0.74 mg/ml), FRAP (89.05 ± 15.49 mg equivalent of FeSO4/g), and inhibition of lipid peroxidation (IC50 = 4.36 ± 0.67 mg/ml).

2.
Food Sci Nutr ; 9(3): 1750-1760, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33747486

ABSTRACT

Lycopene is one of naturally occurring carotenoids in plants including watermelon (Citrullus lanatus). Heat, light, and oxygen effect on lycopene isomerization and degradation. Nanostructured lipid carriers (NLCs) are drug delivery system which can enhance the stability of active compound. Therefore, this study aimed to develop watermelon extract loaded in NLCs for lycopene stability improvement. The NLCs were prepared using a hot homogenization technique. Cocoa butter was used as solid lipid. Grape seed oil was used as liquid lipid. Span® 80 and Plantasens® HE20 were used as an emulsifier. The selected unloaded NLCs contained solid lipid to liquid lipid at the ratio of 3:1 and 10% (w/w) of total lipid. The particle size of watermelon extract-loaded NLCs (WH-loaded NLCs) was 130.17 ± 0.72 nm with low PDI and high zeta potential. It also presented high entrapment efficiency. For stability study, the WH-NLC3 could enhance stability and maintain lycopene content after stability test. It exhibited the highest values of lycopene content (83.26 ± 2.30%) when stored at 4°C. It also possessed a prolonged release pattern over 48 hr. Therefore, the NLCs could improve stability and release profile of lycopene from watermelon extract.

SELECTION OF CITATIONS
SEARCH DETAIL
...