Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 20(23): 4391-4403, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33089837

ABSTRACT

Important insights into human health can be obtained through the non-invasive collection and detailed analysis of sweat, a biofluid that contains a wide range of essential biomarkers. Skin-interfaced microfluidic platforms, characterized by soft materials and thin geometries, offer a collection of capabilities for in situ capture, storage, and analysis of sweat and its constituents. In ambulatory uses cases, the ability to provide real-time feedback on sweat loss, rate and content, without visual inspection of the device, can be important. This paper introduces a low-profile skin-interfaced system that couples disposable microfluidic sampling devices with reusable 'stick-on' electrodes and wireless readout electronics that remain isolated from the sweat. An ultra-thin capping layer on the microfluidic platform permits high-sensitivity, contactless capacitive measurements of both sweat loss and sweat conductivity. This architecture avoids the potential for corrosion of the sensing components and eliminates the need for cleaning/sterilizing the electronics, thereby resulting in a cost-effective platform that is simple to use. Optimized electrode designs follow from a combination of extensive benchtop testing, analytical calculations and FEA simulations for two sensing configurations: (1) sweat rate and loss, and (2) sweat conductivity, which contains information about electrolyte content. Both configurations couple to a flexible, wireless electronics platform that digitizes and transmits information to Bluetooth-enabled devices. On-body field testing during physical exercise validates the performance of the system in scenarios of practical relevance to human health and performance.


Subject(s)
Biosensing Techniques , Sweat , Electronics , Humans , Lab-On-A-Chip Devices , Microfluidics , Skin
2.
Proc Natl Acad Sci U S A ; 115(44): 11144-11149, 2018 10 30.
Article in English | MEDLINE | ID: mdl-30322935

ABSTRACT

Continuous monitoring of blood pressure, an essential measure of health status, typically requires complex, costly, and invasive techniques that can expose patients to risks of complications. Continuous, cuffless, and noninvasive blood pressure monitoring methods that correlate measured pulse wave velocity (PWV) to the blood pressure via the Moens-Korteweg (MK) and Hughes Equations, offer promising alternatives. The MK Equation, however, involves two assumptions that do not hold for human arteries, and the Hughes Equation is empirical, without any theoretical basis. The results presented here establish a relation between the blood pressure P and PWV that does not rely on the Hughes Equation nor on the assumptions used in the MK Equation. This relation degenerates to the MK Equation under extremely low blood pressures, and it accurately captures the results of in vitro experiments using artificial blood vessels at comparatively high pressures. For human arteries, which are well characterized by the Fung hyperelastic model, a simple formula between P and PWV is established within the range of human blood pressures. This formula is validated by literature data as well as by experiments on human subjects, with applicability in the determination of blood pressure from PWV in continuous, cuffless, and noninvasive blood pressure monitoring systems.


Subject(s)
Arteries/physiology , Blood Flow Velocity/physiology , Blood Pressure/physiology , Pulsatile Flow/physiology , Blood Pressure Determination/methods , Electrocardiography/methods , Humans , Monitoring, Physiologic/methods , Pulse Wave Analysis/methods
3.
Small ; 14(45): e1802876, 2018 11.
Article in English | MEDLINE | ID: mdl-30300469

ABSTRACT

Sweat excretion is a dynamic physiological process that varies with body position, activity level, environmental factors, and health status. Conventional means for measuring the properties of sweat yield accurate results but their requirements for sampling and analytics do not allow for use in the field. Emerging wearable devices offer significant advantages over existing approaches, but each has significant drawbacks associated with bulk and weight, inability to quantify volumetric sweat rate and loss, robustness, and/or inadequate accuracy in biochemical analysis. This paper presents a thin, miniaturized, skin-interfaced microfluidic technology that includes a reusable, battery-free electronics module for measuring sweat conductivity and rate in real-time using wireless power from and data communication to electronic devices with capabilities in near field communications (NFC), including most smartphones. The platform exploits ultrathin electrodes integrated within a collection of microchannels as interfaces to circuits that leverage NFC protocols. The resulting capabilities are complementary to those of previously reported colorimetric strategies. Systematic studies of these combined microfluidic/electronic systems, accurate correlations of measurements performed with them to those of laboratory standard instrumentation, and field tests on human subjects exercising and at rest establish the key operational features and their utility in sweat analytics.


Subject(s)
Electronics/methods , Microfluidics/methods , Animals , Electrolytes/chemistry , Humans , Skin/chemistry , Sweat/chemistry
4.
Article in English | MEDLINE | ID: mdl-30882044

ABSTRACT

Peripheral nerves are often vulnerable to damage during surgeries, with risks of significant pain, loss of motor function, and reduced quality of life for the patient. Intraoperative methods for monitoring nerve activity are effective, but conventional systems rely on bench-top data acquisition tools with hard-wired connections to electrode leads that must be placed percutaneously inside target muscle tissue. These approaches are time and skill intensive and therefore costly to an extent that precludes their use in many important scenarios. Here we report a soft, skin-mounted monitoring system that measures, stores, and wirelessly transmits electrical signals and physical movement associated with muscle activity, continuously and in real-time during neurosurgical procedures on the peripheral, spinal, and cranial nerves. Surface electromyography and motion measurements can be performed non-invasively in this manner on nearly any muscle location, thereby offering many important advantages in usability and cost, with signal fidelity that matches that of the current clinical standard of care for decision making. These results could significantly improve accessibility of intraoperative monitoring across a broad range of neurosurgical procedures, with associated enhancements in patient outcomes.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 5997-6001, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28269619

ABSTRACT

Wearable sensors have the potential to enable clinical-grade ambulatory health monitoring outside the clinic. Technological advances have enabled development of devices that can measure vital signs with great precision and significant progress has been made towards extracting clinically meaningful information from these devices in research studies. However, translating measurement accuracies achieved in the controlled settings such as the lab and clinic to unconstrained environments such as the home remains a challenge. In this paper, we present a novel wearable computing platform for unobtrusive collection of labeled datasets and a new paradigm for continuous development, deployment and evaluation of machine learning models to ensure robust model performance as we transition from the lab to home. Using this system, we train activity classification models across two studies and track changes in model performance as we go from constrained to unconstrained settings.


Subject(s)
Cloud Computing , Machine Learning , Models, Theoretical , Monitoring, Ambulatory/instrumentation , Monitoring, Ambulatory/methods , Activities of Daily Living , Adult , Female , Humans , Male
6.
Article in English | MEDLINE | ID: mdl-25571307

ABSTRACT

In this paper, we present a stretchable wearable system capable of i) measuring multiple physiological parameters and ii) transmitting data via radio frequency to a smart phone. The electrical architecture consists of ultra thin sensors (<; 20 µm thick) and a conformal network of associated active and passive electronics in a mesh-like geometry that can mechanically couple with the curvilinear surfaces of the human body. Spring-like metal interconnects between individual chips on board the device allow the system to accommodate strains approaching ~30% A representative example of a smart patch that measures movement and electromyography (EMG) signals highlights the utility of this new class of medical skin-mounted system in monitoring a broad range of neuromuscular and cardiovascular diseases.


Subject(s)
Cardiovascular Diseases/physiopathology , Electromyography/instrumentation , Neuromuscular Diseases/physiopathology , Cardiovascular Diseases/diagnosis , Humans , Movement , Neuromuscular Diseases/diagnosis , Radio Waves , Signal Processing, Computer-Assisted , Skin/physiopathology , Transducers , Wireless Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...