Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
3 Biotech ; 8(11): 475, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30456009

ABSTRACT

Lipopolysaccharide (LPS) elicitors isolated from Pseudomonas fluorescens UOM SAR 14 effectively induced systemic and durable resistance against pearl millet downy mildew disease caused by the oomycete Sclerospora graminicola. Rapid and increased callose deposition and H2O2 accumulation were evidenced in downy mildew susceptible seeds pre-treated with LPS (SLPS) in comparison with the control seedlings, which also correlated with expression of various other defense responses. Biochemical analysis of enzymes and quantitative real-time polymerase chain reaction data suggested that LPS protects pearl millet against downy mildew through the activation of plant defense mechanisms such as generation of nitric oxide (NO), increased expression, and activities of defense enzymes and proteins. Elevation of NO concentrations was shown to be essential for LPS-mediated defense manifestation in pearl millet and had an impact on the other downstream defense responses like enhanced activation of enzymes and pathogen-related (PR) proteins. Temporal expression analysis of defense enzymes and PR-proteins in SLPS seedlings challenged with the downy mildew pathogen revealed that the activity and expression of peroxidase, phenylalanine ammonia lyase, and the PR-proteins (PR-1 and PR-5) were significantly enhanced compared to untreated control. Higher gene expression and protein activities of hydroxyproline-rich glycoproteins (HRGPs) were observed in SLPS seedlings which were similar to that of the resistant check. Collectively, our results suggest that, in pearl millet-downy mildew interaction, LPS pre-treatment affects defense signaling through the central regulator NO which triggers the activities of PAL, POX, PR-1, PR-5, and HRGPs.

2.
Acta Biochim Biophys Sin (Shanghai) ; 44(5): 415-23, 2012 May.
Article in English | MEDLINE | ID: mdl-22411686

ABSTRACT

Polygalacturonase-inhibitor protein (PGIP) is a defense protein found in plant cell walls. It prevents the degradation of pectin by modulating the endo-polygalacturonase activity. The present study has used heterologous anti-bean PGIP probes to investigate the role of PGIP in pearl millet [Pennisetum glaucum (L) R. Br.] resistance against downy mildew caused by oomycete pathogen Sclerospora graminicola (Sacc.) Schroet. Northern blot analysis using bean pgip2 DNA fragment as probe showed an early and marked induction of transcripts (∼1.2 kb) upon pathogen-inoculation in pearl millet cultivar resistant to downy mildew, with the maximum level observed at 24 and 48 h post-inoculation (h.p.i.). Western blot analysis of pearl millet total cell wall proteins using antibodies against bean PGIP showed the presence of a major band of ∼43 kDa, and several minor ones. The protein accumulation was higher in resistant seedlings than in susceptible seedlings with a differential expression observed only in the case of incompatible interaction. Immunocytochemical localization in epidermal peelings of coleoptiles and tissue-printing showed a similar trend in the PGIP accumulation. PGIP was found to localize in the epidermal as well as in the vascular regions of tissues. Higher accumulation was observed in the stomatal guard cells of resistant cultivar inoculated with the pathogen. PGIP activity of pearl millet total protein extracts when assayed against Aspergillus niger PG displayed differential PG inhibitory activities between the resistant and suceptible cultivars with resistant sample showing the highest inhibition of 16%, post-pathogen treatment. Thus, PGIP appeared to be an important player in pearl millet-S. graminicola interaction leading to host resistance.


Subject(s)
Plant Diseases/prevention & control , Plant Proteins/physiology , Polygalacturonase/antagonists & inhibitors , Mycoses/prevention & control , Pennisetum/chemistry , Pennisetum/genetics , Peronospora/pathogenicity , Plant Proteins/genetics , Seedlings/metabolism
3.
Funct Plant Biol ; 33(6): 563-571, 2006 Jun.
Article in English | MEDLINE | ID: mdl-32689264

ABSTRACT

Polyphenol oxidase (PPO) activity was analysed in seedlings of resistant and susceptible pearl millet [Pennisetum glaucum (L.) R.Br] cultivars with or without inoculation of the downy mildew pathogen Sclerospora graminicola (Sacc.) Schroet. Seedlings of resistant varieties had greater PPO activity than susceptible seedlings, and inoculated seedlings had significantly higher PPO levels than uninoculated seedlings. Temporal accumulation of PPO showed a maximum activity at 24 h post-inoculation in resistant seedlings, whereas in susceptible seedlings it peaked at 48 h. PPO activity was positively correlated with levels of downy mildew resistance in different pearl millet cultivars under field conditions. Native PAGE staining showed four isoforms of PPO, which were differentially induced in relation to the time of appearance and intensities in the uninoculated seedlings, whereas a fifth PPO isoform appeared after inoculation with S. graminicola. PPO activity was significantly higher in the shoot and leaves of pearl millet than in the root. Tissue printing analysis of the enzyme expression showed that the enzyme is predominantly expressed after pathogen inoculation and is localised in the epidermal and vascular regions. Temporal analysis of transcript accumulation showed that in resistant seedlings PPO mRNAs was expressed earlier and more abundantly than in susceptible seedlings. Our studies demonstrate, for the first time, that PPO is actively involved in plant defence and can be used as a marker of resistance to downy mildew infection in pearl millet.

4.
Plant Dis ; 87(4): 380-384, 2003 Apr.
Article in English | MEDLINE | ID: mdl-30831832

ABSTRACT

A series of laboratory, greenhouse, and field experiments were conducted to evaluate seven strains of plant growth-promoting rhizobacteria (PGPR). The PGPR were tested as suspensions of fresh cultures and talc-based powder formulations. Evaluations were conducted on pearl millet (Pennisetum glaucum) for growth promotion and management of downy mildew caused by Sclerospora graminicola. All treatments with fresh suspensions and powdered formulations showed enhancement in germination and vigor index over the respective untreated controls. With fresh suspensions, maximum vigor index resulted from treatments by Bacillus pumilus strain INR7 followed by B. subtilis strain IN937b (64 and 38% higher than the untreated control, respectively). With powdered formulation, treatment with strain INR7 also resulted in the highest germination and vigor indexes, which were 10 and 63%, respectively, over the untreated control. Under experimental plot conditions, prominent enhancement in growth also was observed in the disease tests. Yield was enhanced 40 and 37% over the untreated control by seed treatment with powdered formulations of strains INR7 and SE34, respectively. The same strains also increased yield by 36 and 33%, respectively, when applied as fresh suspensions. Studies on downy mildew management resulted in varied degrees of protection by the PGPR both under greenhouse and field conditions. With fresh suspensions, treatment with INR7 resulted in the highest protection (57%), followed by B. pumilus strain SE34 and B. subtilis strain GBO3, which resulted in 50 and 43% protection, respectively, compared with the untreated control. With powdered formulation, PGPR strain INR7 suppressed downy mildew effectively, resulting in 67% protection, while SE34 resulted in 58% protection, followed by GBO3 with 56% protection. Treatment with Apron (Metalaxyl) resulted in the highest protection against downy mildew under both greenhouse and field conditions. Thus, the present study suggests that the tested PGPR, both as powdered formulations and fresh suspensions, can be used within pearl millet downy mildew management strategies and for plant growth promotion.

SELECTION OF CITATIONS
SEARCH DETAIL
...