Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(47): 52918-52926, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36383741

ABSTRACT

Carrier-selective contacts have emerged as a promising architecture for solar cell fabrication. In this report, the first hole-selective III-V semiconductor solar cell is demonstrated using copper iodide (CuI) on i-GaAs. Surface passivation quality of GaAs is found to be essential for open-circuit voltage (VOC), with good correlation between photoluminescence properties of the GaAs layer and the VOC. Passivation with <10 nm thick In0.49Ga0.51P layers is shown to provide an over 300 mV improvement. Oxygen-rich CuI is formed by natural oxidation in the atmosphere, and the increased oxygen content of ∼10% is validated by energy-dispersive X-ray measurements. The oxygen incorporation is shown to improve hole selectivity and thus solar conversion efficiency. Ultraviolet photoelectron spectroscopy indicates a high work function of ∼6 eV for the oxygen-rich CuI. With optimized GaAs surface passivation and oxygen-rich CuI, a VOC of nearly 1 V and a solar conversion efficiency of 13.4% are achieved. The solar cell structure includes only undoped GaAs, a surface passivation layer, and non-epitaxial CuI contact and is therefore very promising to various low-cost crystal growth methods. The results have a significant impact on III-V solar cell fabrication and costs as it (i) enables fully carrier-selective architectures, (ii) reduces cell fabrication complexity, and (iii) is suitable for layers grown by low-cost crystal growth techniques.

2.
Adv Mater ; 33(49): e2105729, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34622479

ABSTRACT

Highly sensitive photodetectors with single-photon level detection are one of the key components to a range of emerging technologies, in particular the ever-growing field of optical communication, remote sensing, and quantum computing. Currently, most of the single-photon detection technologies require external biasing at high voltages and/or cooling to low temperatures, posing great limitations for wider applications. Here, InP nanowire array photodetectors that can achieve single-photon level light detection at room temperature without an external bias are demonstrated. Top-down etched, heavily doped p-type InP nanowires and n-type aluminium-doped zinc oxide (AZO)/zinc oxide (ZnO) carrier-selective contact are used to form a radial p-n junction with a built-in electric field exceeding 3 × 105  V cm-1  at 0 V. The device exhibits broadband light sensitivity and can distinguish a single photon per pulse from the dark noise at 0 V, enabled by its design to realize near-ideal broadband absorption, extremely low dark current, and highly efficient charge carrier separation. Meanwhile, the bandwidth of the device reaches above 600 MHz with a timing jitter of 538 ps. The proposed device design provides a new pathway toward low-cost, high-sensitivity, self-powered photodetectors for numerous future applications.

3.
Biophys Rev (Melville) ; 2(2): 021303, 2021 Jun.
Article in English | MEDLINE | ID: mdl-38505122

ABSTRACT

A deeper understanding of the brain and its function remains one of the most significant scientific challenges. It not only is required to find cures for a plethora of brain-related diseases and injuries but also opens up possibilities for achieving technological wonders, such as brain-machine interface and highly energy-efficient computing devices. Central to the brain's function is its basic functioning unit (i.e., the neuron). There has been a tremendous effort to understand the underlying mechanisms of neuronal growth on both biochemical and biophysical levels. In the past decade, this increased understanding has led to the possibility of controlling and modulating neuronal growth in vitro through external chemical and physical methods. We provide a detailed overview of the most fundamental aspects of neuronal growth and discuss how researchers are using interdisciplinary ideas to engineer neuronal networks in vitro. We first discuss the biochemical and biophysical mechanisms of neuronal growth as we stress the fact that the biochemical or biophysical processes during neuronal growth are not independent of each other but, rather, are complementary. Next, we discuss how utilizing these fundamental mechanisms can enable control over neuronal growth for advanced neuroengineering and biomedical applications. At the end of this review, we discuss some of the open questions and our perspectives on the challenges and possibilities related to controlling and engineering the growth of neuronal networks, specifically in relation to the materials, substrates, model systems, modulation techniques, data science, and artificial intelligence.

4.
ACS Nano ; 14(6): 7484-7491, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32437132

ABSTRACT

Semiconductor nanowires are routinely grown on high-priced crystalline substrates as it is extremely challenging to grow directly on plastics and flexible substrates due to high-temperature requirements and substrate preparation. At the same time, plastic substrates can offer many advantages such as extremely low price, light weight, mechanical flexibility, shock and thermal resistance, and biocompatibility. We explore the direct growth of high-quality III-V nanowires on flexible plastic substrates by metal-organic vapor phase epitaxy (MOVPE). We synthesize InAs and InP nanowires on polyimide and show that the fabricated NWs are optically active with strong light emission in the mid-infrared range. We create a monolithic flexible nanowire-based p-n junction device on plastic in just two fabrication steps. Overall, we demonstrate that III-V nanowires can be synthesized directly on flexible plastic substrates inside a MOVPE reactor, and we believe that our results will further advance the development of the nanowire-based flexible electronic devices.

5.
ACS Nano ; 13(10): 12015-12023, 2019 Oct 22.
Article in English | MEDLINE | ID: mdl-31539225

ABSTRACT

Currently, a significant amount of photovoltaic device cost is related to its requirement of high-quality absorber materials, especially in the case of III-V solar cells. Therefore, a technology that can transform a low-cost, low minority carrier lifetime material into an efficient solar cell can be beneficial for future applications. Here, we transform an inefficient p-type InP substrate with a minority carrier lifetime less than 100 ps into an efficient solar cell by utilizing a radial p-n junction nanowire architecture. We fabricate a p-InP/n-ZnO/AZO radial heterojunction nanowire solar cell to achieve a photovoltaic conversion efficiency of 17.1%, the best reported value for radial junction nanowire solar cells. The quantum efficiency of ∼95% (between 550 and 750 nm) and the short-circuit current density of 31.3 mA/cm2 are among the best for InP solar cells. In addition, we also perform an advanced loss analysis of the proposed solar cell to assess different loss mechanisms in the solar cell.

6.
ACS Appl Mater Interfaces ; 11(27): 24254-24263, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31251025

ABSTRACT

The challenges of making high-performance, low-temperature processed, p-type transparent conductors (TCs) have been the main bottleneck for the development of flexible transparent electronics. Though a few p-type transparent conducting oxides (TCOs) have shown promising results, they need high processing temperature to achieve the required conductivity which makes them unsuitable for organic and flexible electronic applications. Copper iodide is a wide band gap p-type semiconductor that can be heavily doped at low temperature (<100 °C) to achieve conductivity comparable or higher than many of the well-established p-type TCOs. However, as-processed CuI loses its transparency and conductivity with time in an ambient condition which makes them unsuitable for long-term applications. Herein, we propose CuI-TiO2 composite thin films as a replacement of pure CuI. We show that the introduction of TiO2 in CuI makes it more stable in ambient conditions while also improving its conductivity and transparency. A detailed comparative analysis between CuI and CuI-TiO2 composite thin films has been performed to understand the reasons for improved conductivity, transparency, and stability of CuI-TiO2 samples in comparison to pure CuI samples. The enhanced conductivity in CuI-TiO2 stems from the highly conductive space-charge layer formation at the CuI-TiO2 interface, whereas the improved transparency is due to reduced CuI grain growth mobility in the presence of TiO2. The improved stability of CuI-TiO2 in comparison to pure CuI is a result of inhibited recrystallization and grain growth, reduced loss of iodine, and limited oxidation of the CuI phase in the presence of TiO2. For optimized fraction of TiO2, an average transparency of ∼78% (in 450-800 nm region) and a resistivity of 14 mΩ·cm are achieved, while maintaining a relatively high mobility of ∼3.5 cm2 V-1 s-1 with hole concentration reaching as high as 1.3 × 1020 cm-3. Most importantly, this work opens up the possibility to design a new range of p-type transparent conducting materials using the CuI/insulator composite system such as CuI/SiO2, CuI/Al2O3, CuI/SiNx, and so forth.

SELECTION OF CITATIONS
SEARCH DETAIL
...