Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 67(6): 1883-95, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26826218

ABSTRACT

Lamina inclination is a key agronomical character that determines plant architecture and is sensitive to auxin and brassinosteroids (BRs). Loose Plant Architecture1 (LPA1) in rice (Oryza sativa) and its Arabidopsis homologues (SGR5/AtIDD15) have been reported to control plant architecture and auxin homeostasis. This study explores the role of LPA1 in determining lamina inclination in rice. LPA1 acts as a positive regulator to suppress lamina bending. Genetic and biochemical data indicate that LPA1 suppresses the auxin signalling that interacts with C-22-hydroxylated and 6-deoxo BRs, which regulates lamina inclination independently of OsBRI1. Mutant lpa1 plants are hypersensitive to indole-3-acetic acid (IAA) during the lamina inclination response, which is suppressed by the brassinazole (Brz) inhibitor of C-22 hydroxylase involved in BR synthesis. A strong synergic effect is detected between lpa1 and d2 (the defective mutant for catalysis of C-23-hydroxylated BRs) during IAA-mediated lamina inclination. No significant interaction between LPA1 and OsBRI1 was identified. The lpa1 mutant is sensitive to C-22-hydroxylated and 6-deoxo BRs in the d61-1 (rice BRI1 mutant) background. We present evidence verifying that two independent pathways function via either BRs or BRI1 to determine IAA-mediated lamina inclination in rice. RNA sequencing analysis and qRT-PCR indicate that LPA1 influences the expression of three OsPIN genes (OsPIN1a, OsPIN1c and OsPIN3a), which suggests that auxin flux might be an important factor in LPA1-mediated lamina inclination in rice.


Subject(s)
Brassinosteroids/pharmacology , Indoleacetic Acids/metabolism , Oryza/physiology , Plant Leaves/physiology , Plant Proteins/metabolism , Signal Transduction , Alleles , Biomechanical Phenomena/drug effects , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Hydroxylation , Mutation/genetics , Oryza/drug effects , Oryza/genetics , Phenotype , Plant Epidermis/cytology , Plant Epidermis/drug effects , Plant Leaves/drug effects , Real-Time Polymerase Chain Reaction , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...