Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Biofuels Bioprod ; 17(1): 37, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38449061

ABSTRACT

BACKGROUND: EnZolv is a novel enzyme-based, eco-friendly biomass pretreatment process that has shown great potential in the field of textile engineering and biotechnology. It employs laccase from Hexagonia hirta MSF2 and 2% ethanol in the process of delignification. The process is designed to evaluate optimal conditions to remove lignin and other impurities from cotton spinning mill waste (CSMW), without compromising the quality and strength of the fibers. CSMW is a low-cost and readily available source of cellulose, making it an ideal candidate for delignification using EnZolv. By optimizing the pretreatment conditions and harnessing the potential of enzymatic delignification, this research aims to contribute to more sustainable and efficient ways of utilizing lignocellulosic biomass in various industries for the production of biochemical and bioproducts. RESULTS: The present study emphasizes the EnZolv pretreatment in the delignification of cotton spinning mill wastes irrespective of the cellulose content. EnZolv process parameters such as, moisture content, enzyme load, incubation time, incubation temperature, and shaking speed were optimized. Under pre-optimized conditions, the percent lignin reduction was 61.34%, 61.64%, 41.85%, 35.34%, and 35.83% in blowroom droppings (BD), flat strips (FS), lickerin fly (LF), microdust (MD) and comber noils (CN), respectively. Using response surface methodology (RSM), the statistically optimized EnZolv pretreatment conditions showed lignin reduction of 59.16%, 62.88%, 48.26%, 34.64%, and 45.99% in BD, FS, LF, MD, and CN, respectively. CONCLUSION: Traditional chemical-based pretreatment methods often involve harsh chemicals and high energy consumption, which can have detrimental effects on the environment. In contrast, EnZolv offers a greener approach by utilizing enzymes that are biodegradable and more environmentally friendly. The resulting fibers from EnZolv treatment exhibit improved properties that make them suitable for various applications. Some of the key properties include enhanced cellulose recovery, reduced lignin content, and improved biophysical and structural characteristics. These improvements can contribute to the fiber's performance and processability in different industries and future thrust for the production of cellulose-derived and lignin-derived bioproducts.

2.
Appl Biochem Biotechnol ; 175(8): 3856-62, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25712909

ABSTRACT

Pashmina fiber is one of major specialty animal fiber in India. The quality of Pashmina obtained from Changthangi and Chegu goats in India is very good. Due to restricted availability and high prices, adulteration of natural prized fibers is becoming a common practice by the manufacturers. Sheep wool is a cheap substitute, which is usually used for adulteration and false declaration of Pashmina-based products. Presently, there is lack of cost-effective and readily available methodology to identify the adulteration of Pashmina products from other similar looking substitutes like sheep wool. Polymerase chain reaction (PCR)-based detection method can be used to identify origin of animal fiber. Extraction of quality DNA from dyed and processed animal fiber and textile materials is a limiting factor in the development of such detection methods. In the present study, quality DNA was extracted from textile materials, and PCR-based technique using mitochondrial gene (12S rRNA) specific primers was developed for detection of the Pashmina in textile blends. This technique has been used for detection of the adulteration of the Pashmina products with sheep wool. The technique can detect adulteration level up to 10 % of sheep/goat fibers in textile blends.


Subject(s)
DNA/genetics , Polymerase Chain Reaction , RNA, Ribosomal/genetics , Textiles/standards , Animals , DNA/isolation & purification , Goats/genetics , India , RNA, Ribosomal/classification , Sheep/genetics , Textiles/classification , Wool/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...