Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Nanosci Nanotechnol ; 12(6): 4613-20, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22905508

ABSTRACT

Highly basic CaO nanoparticles immobilized mesoporous carbon materials (CaO-CMK-3) with different pore diameters have been successfully prepared by using wet-impregnation method. The prepared materials were subjected to extensive characterization studies using sophisticated techniques such as XRD, nitrogen adsorption, HRSEM-EDX, HRTEM and temperature programmed desorption of CO2 (TPD of CO2). The physico-chemical characterization results revealed that these materials possess highly dispersed CaO nanoparticles, excellent nanopores with well-ordered structure, high specific surface area, large specific pore volume, pore diameter and very high basicity. We have also demonstrated that the basicity of the CaO-CMK-3 samples can be controlled by simply varying the amount of CaO loading and pore diameter of the carbon support. The basic catalytic performance of the samples was investigated in the base-catalyzed transesterification of ethylacetoacetate by aryl, aliphatic and cyclic primary alcohols. CMK-3 catalyst with higher CaO loading and larger pore diameter was found to be highly active with higher conversion within a very short reaction time. The activity of 30% CaO-CMK3-150 catalyst for transesterification of ethylacetoacetate using different alcohols increases in the following order: octanol > butanol > cyclohexanol > benzyl alcohol > furfuryl alcohol.


Subject(s)
Calcium Compounds/chemistry , Carbon/chemistry , Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Oxides/chemistry , Absorption , Catalysis , Hydrogen-Ion Concentration , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Porosity , Surface Properties
2.
J Nanosci Nanotechnol ; 12(11): 8467-74, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23421232

ABSTRACT

Highly basic active sites were introduced by the encapsulation of SrO nanoparticles inside the porous channels of highly ordered mesoporous carbon using wet-impregnation method. The samples prepared were thoroughly investigated employing various physico-chemical characterization techniques such as X-ray diffraction (XRD), N2 adsorption, high resolution transmission electron microscope (HRTEM) and elemental mapping. The basic sites located inside the nanochannels were quantified by the temperature programmed desorption (TPD) of CO2. XRD, N2 adsorption and HRTEM results revealed that the structural order of the parent CMK-3 support is retained even after higher loading of SrO nanoparticles. TPD of CO2 profiles confirmed that the number of basic active sites can be controlled by varying the SrO loading and the pore diameter of the CMK-3 support. The catalytic potential of the prepared samples was investigated on the transesterification of ethyl acetoacetate (EAA) as a probe reaction. Among the catalysts studied, CMK-3-150 loaded with 30 wt% of SrO nanoparticles exhibited the highest catalytic activity. The effect of various alcohols such as aryl (benzyl alcohol), aliphatic (1-butanol and 1-octanol) and cyclic alcohols (cyclohexanol and furfuryl alcohol) affecting the activity of the catalyst was also investigated. It was found that the catalyst offers maximum conversion when linear aliphatic alcohols especially, 1-butanol with shorter chain length are used. The amount of SrO loading, pore diameter of the CMK-3 support and the weight of the catalyst affecting the catalytic performance of the samples were investigated and discussed in accordance with the physico-chemical characterization data of the catalysts.


Subject(s)
Acetoacetates/chemistry , Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Oxides/chemistry , Strontium/chemistry , Adsorption , Esterification , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...