Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124535, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38830327

ABSTRACT

In this study, we report on the fabrication of hybrid nanofibers for labeling and bioimaging applications. Our approach is involved for developing highly fluorescent nanofibers using a blend of polylactic acid, polyethyleneglycol, and perylenediimide dyes, through the solution blow spinning technique. The nanofibers are exhibited diameters ranging from 330 nm to 420 nm. Nanofibers showed excellent red and near-infrared fluorescence emissive properties in fluorescent spectroscopy. Moreover, the strong two-photon absorption phenomenon was observed for nanofibers under confocal microscopy. To assess the applicability of these fluorescent nanofibers in bioimaging settings, we employ two types of mammalian cells B16F1 melanoma cells and J774.A1 macrophages. Both cell types exhibit negligible cytotoxicity after 24 h incubation with the nanofibers, indicating the suitability of nanofibers for cell-based experiments. We also observe strong interactions between the nanofibers and cells, as evidenced by two major events: a) the acquisition of an elongated cellular morphology with the major cellular axis parallel to the nanofibers and b) the accumulation of actin filaments along the points of contact of the cells with the fibers. Our findings demonstrate the suitability of these newly developed fluorescent nanofibers in cell-based applications for guiding cellular behavior. We expect that these fluorescent nanofibers have the potential to serve as scaffold materials for long-time tracking of cell-fiber interactions in fluorescence microscopy.


Subject(s)
Fluorescent Dyes , Nanofibers , Tissue Scaffolds , Nanofibers/chemistry , Animals , Mice , Tissue Scaffolds/chemistry , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence , Cell Line, Tumor , Polyesters/chemistry , Microscopy, Confocal , Polyethylene Glycols/chemistry , Cell Line , Macrophages/metabolism , Macrophages/cytology , Macrophages/drug effects
2.
Mol Biol Cell ; 35(3): ar34, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38170582

ABSTRACT

Immune cells employ diverse mechanisms for host defense. Macrophages, in response to TLR activation, assemble aggresome-like induced structures (ALIS). Our group has shown TLR4-signaling transcriptionally upregulates p62/sequestome1, which assembles ALIS. We have demonstrated that TLR4-mediated autophagy is, in fact, selective-autophagy of ALIS. We hypothesize that TLR-mediated autophagy and ALIS contribute to host-defense. Here we show that ALIS are assembled in macrophages upon exposure to different bacteria. These structures are associated with pathogen-containing phagosomes. Importantly, we present evidence of increased bacterial burden, where ALIS assembly is prevented with p62-specific siRNA. We have employed 3D-super-resolution structured illumination microscopy (3D-SR-SIM) and mass-spectrometric (MS) analyses to gain insight into the assembly of ALIS. Ultra-structural analyses of known constituents of ALIS (p62, ubiquitin, LC3) reveal that ALIS are organized structures with distinct patterns of alignment. Furthermore, MS-analyses of ALIS identified, among others, several proteins of known antimicrobial properties. We have validated MS data by testing the association of some of these molecules (Bst2, IFITM2, IFITM3) with ALIS and the phagocytosed-bacteria. We surmise that AMPs enrichment in ALIS leads to their delivery to bacteria-containing phagosomes and restricts the bacteria. Our findings in this paper support hitherto unknown functions of ALIS in host-defense.


Subject(s)
Antimicrobial Peptides , Toll-Like Receptor 4 , Toll-Like Receptor 4/genetics , Macrophages/metabolism , Ubiquitin/metabolism , Autophagy/physiology
3.
Mater Sci Eng C Mater Biol Appl ; 129: 112409, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34579918

ABSTRACT

This study reports the generation of curauá-derived carbon dots (C-dots) and their suitability for Fe(III) detection, bioimaging and FACS analysis. C-dots were generated from curauá (Ananas erectifolius) fibers by a facile one-step hydrothermal approach. They exhibited graphite-like structure with a mean diameter of 2.4 nm, high water solubility, high levels of carboxyl and hydroxyl functional groups, excitation-dependent multicolor fluorescence emission (in the range 450 nm - 560 nm) and superior photostability. C-dots were highly selective and effective for the detection of ferric Fe(III) ion in an aqueous medium with a detection limit of 0.77 µM in the linear range of 0-30 µM, a value much lower than the guideline limits proposed by the World Health Organization (WHO). In biological cell systems, C-dots were very well tolerated by B16F1 mouse melanoma and J774.A1 mouse macrophages cell lines, both of which effectively internalized C-dots in their cytoplasmic compartment. Finally, C-dots were effective probes for long-term live cell imaging experiments and multi-channel flow cytometry analysis. Collectively, our findings demonstrate that curauá-derived C-dots serve as versatile and effective natural products for Fe(III) ion sensing, labeling and bioimaging of various cell types. This study adds novel C-dots to the library of carbon-based probes and paves the way towards a sustainable conversion of a most abundant biomass waste into value-added products.


Subject(s)
Carbon , Quantum Dots , Animals , Ferric Compounds , Fluorescent Dyes , Iron , Mice , Spectrometry, Fluorescence
4.
J Biol Chem ; 297(2): 100935, 2021 08.
Article in English | MEDLINE | ID: mdl-34224728

ABSTRACT

Ras-association domain family (RASSF) proteins are encoded by numerous tumor suppressor genes that frequently become silenced in human cancers. RASSF10 is downregulated by promoter hypermethylation in cancers and has been shown to inhibit cell proliferation; however, the molecular mechanism(s) remains poorly understood. Here, we demonstrate for the first time that RASSF10 inhibits Cdk1/cyclin-B kinase complex formation to maintain stable levels of cyclin-B for inducing mitotic arrest during cell cycle. Using LC-MS/MS, live cell imaging, and biochemical approaches, we identify Nucleophosmin (NPM) as a novel functional target of RASSF10 and revealed that RASSF10 expression promoted the nuclear accumulation of GADD45a and knockdown of either NPM or GADD45a, resulting in impairment of RASSF10-mediated G2/M phase arrest. Furthermore, we demonstrate that RASSF10 is a substrate for the E3 ligase ring finger protein 2 (RNF2) and show that an NPM-dependent downregulation of RNF2 expression is critical to maintain stable RASSF10 levels in cells for efficient mitotic arrest. Interestingly, the Kaplan-Meier plot analysis shows a positive correlation of RASSF10 and NPM expression with greater gastric cancer patient survival and the reverse with expression of RNF2, suggesting that they may have a role in cancer progression. Finally, our findings provide insights into the mode of action of the RASSF10/NPM/RNF2 signaling cascade on controlling cell proliferation and may represent a novel therapeutic avenue for the prevention of gastric cancer metastasis.


Subject(s)
Nuclear Proteins , Polycomb Repressive Complex 1 , Stomach Neoplasms , CDC2 Protein Kinase/metabolism , Cell Line, Tumor , Cell Proliferation , DNA Methylation , Gene Expression Regulation, Neoplastic , Humans , Nucleophosmin
5.
Biomacromolecules ; 22(2): 454-466, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33284004

ABSTRACT

Cellulose nanocrystals (CNCs) are unique and promising natural nanomaterials that can be extracted from native cellulose fibers by acid hydrolysis. In this study, we developed chemically modified CNC derivatives by covalent tethering of PEGylated biotin and perylenediimide (PDI)-based near-infrared organic dye and evaluated their suitability for labeling and imaging of different cell lines including J774A.1 macrophages, NIH-3T3 fibroblasts, HeLa adenocarcinoma cells, and primary murine dendritic cells. PDI-labeled CNCs showed a superior photostability compared to similar commercially available dyes under long periods of constant and high-intensity illumination. All CNC derivatives displayed excellent cytocompatibility toward all cell types and efficiently labeled cells in a dose-dependent manner. Moreover, CNCs were effectively internalized and localized in the cytoplasm around perinuclear areas. Thus, our findings demonstrate the suitability of these new CNC derivatives for labeling, imaging, and long-time tracking of a variety of cell lines and primary cells.


Subject(s)
Nanoparticles , Nanostructures , Animals , Cellulose , HeLa Cells , Humans , Mice
6.
Mol Biol Cell ; 31(4): 304-317, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31913756

ABSTRACT

Simian immunodeficiency virus (SIV) and human immunodeficiency virus 2 (HIV-2) display unique ability to infect nondividing target cells. Viral protein X (Vpx) of HIV-2/SIV is known to be involved in the nuclear import of viral genome in nondividing cells, but the mechanism remains poorly understood. In the present investigation for the first time we provide evidence that Vpx of SIVsmPBj1.9 physically interacts with human nucleoporin 153 (Nup153), which is known to provide a docking site for protein-cargo complexes at the nuclear pore complex (NPC). Results from superresolution-structured illumination microscopy studies reveal that Vpx interaction with NPC-associated Nup153 is critical for its efficient nuclear translocation. Virion-associated MAPK/ERK-2-mediated phosphorylation of Vpx plays a critical role in its interaction with human Nup153 and this interaction was found to be evolutionarily conserved in various SIV isolates and HIV-2. Interestingly, MAPK/ERK-2 packaging defective SIV failed to promote the efficient nuclear import of viral genome and suggests that MAPK/ERK-2-mediated Vpx phosphorylation is important for its interaction with Nup153, which is critical for lentiviruses to establish infection in nondividing target cells. Together, our data elucidate the mechanism by which Vpx orchestrates the challenging task of nuclear translocation of HIV-2/SIV genome in nondividing target cells.


Subject(s)
Genome, Viral , HIV-2/genetics , Nuclear Pore Complex Proteins/genetics , Simian Immunodeficiency Virus/genetics , Viral Regulatory and Accessory Proteins/genetics , Active Transport, Cell Nucleus/genetics , Animals , Gene Expression Regulation , HEK293 Cells , HIV-2/metabolism , Haplorhini , HeLa Cells , Host-Pathogen Interactions/genetics , Humans , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/metabolism , Phosphorylation , Signal Transduction , Simian Immunodeficiency Virus/metabolism , Viral Regulatory and Accessory Proteins/metabolism , Virion/genetics , Virion/metabolism
7.
Biochem Biophys Res Commun ; 511(1): 192-198, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30777327

ABSTRACT

Vpx, a virion-associated protein of Human Immunodeficiency Virus 2 (HIV-2) and Simian Immunodeficiency Virus (SIV) counteracts host restriction factor SAMDH1 for efficient viral DNA synthesis in the cytoplasm and mediates subsequent nuclear translocation of the viral genome. Vpx was found to be indispensable in the viral infection of terminally differentiated target cells and macaques infected with virions carrying truncated Vpx showed delayed pathogenesis, suggesting multiple roles of Vpx at different steps in the virus life cycle. The current study demonstrates a novel function of SIVsmPBj1.9 Vpx on the integrity of the nuclear envelope in HeLa cells. Results from the Super-Resolution Structured Illumination Microscopy (SR-SIM) analysis showed that Vpx puncta alter HeLa cell nuclear envelope assembly. Furthermore, three-dimensional (3D) SIM analysis of such regions suggests that Vpx is primed in a specific way to disrupt the nuclear envelope integrity. The nuclear incursion of cytoplasmic proteins through Vpx mediated ruptured nuclear envelope regions suggest that these events might play a critical role in the nuclear entry of otherwise cytoplasmically sequestered molecules and theirby may be assisting Vpx functions including the transport of viral genome into the nucleus, which is critical for the establishment of virus infection and pathogenesis.


Subject(s)
Nuclear Envelope/virology , Simian Acquired Immunodeficiency Syndrome/metabolism , Simian Immunodeficiency Virus/physiology , Viral Regulatory and Accessory Proteins/metabolism , Animals , HEK293 Cells , HeLa Cells , Host-Pathogen Interactions , Humans , Nuclear Envelope/metabolism , Nuclear Envelope/pathology , Simian Acquired Immunodeficiency Syndrome/pathology
8.
ACS Appl Mater Interfaces ; 7(50): 27720-9, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26599347

ABSTRACT

The efficiency of organic photodetectors and optoelectronic devices is strongly limited by exciton diffusion, in particular for acceptor materials. Although mechanisms for exciton diffusion are well established, their correlation to molecular organization in real systems has received far less attention. In this report, organic single-crystals interfaces were probed with wavelength-dependent photocurrent spectroscopy and their crystal structure resolved using X-ray diffraction. All systems present a dynamic photoresponse, faster than 500 ms, up to 650 nm. A relationship between molecular organization and favorable exciton diffusion in substituted butyl-perylenediimides (PDIB) is established. This is demonstrated by a set of PDIBs with different intra- and interstack distances and short contacts and their impact on photoresponse. Given the short packing distances between PDIs cores along the same stacking direction (3.4-3.7 Å), and across parallel stacks (2.5 Å), singlet exciton in these PDIBs can follow both Förster and Dexter exciton diffusion, with the Dexter-type mechanism assuming special relevance for interstack exciton diffusion. Yet, the response is maximized in substituted PDIBs, where a 2D percolation network is formed through strong interstack contacts, allowing for PDIBs primary excitons to reach with great efficiency the splitting interface with crystalline rubrene. The importance of short contacts and molecular distances, which is often overlooked as a parameter to consider and optimize when choosing materials for excitonic devices, is emphasized.

9.
J Am Chem Soc ; 137(22): 7104-10, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-25990135

ABSTRACT

Exciton diffusion is at the heart of most organic optoelectronic devices' operation, and it is currently the most limiting factor to their achieving high efficiency. It is deeply related to molecular organization, as it depends on intermolecular distances and orbital overlap. However, there is no clear guideline for how to improve exciton diffusion with regard to molecular design and structure. Here, we use single-crystal charge-transfer interfaces to probe favorable exciton diffusion. Photoresponse measurements on interfaces between perylenediimides and rubrene show a higher photocurrent yield (+50%) and extended spectral coverage (+100 nm) when there is increased dimensionality of the percolation network and stronger orbital overlap. This is achieved by very short interstack distances in different directional axes, which favors exciton diffusion by a Dexter mechanism. Even if the core of the molecule shows strong deviation from planarity, the similar electrical resistance of the different systems, planar and nonplanar, shows that electronic transport is not compromised. These results highlight the impact of molecular organization in device performance and the necessity of optimizing it to take full advantage of the materials' properties.

10.
Bioconjug Chem ; 23(3): 565-73, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22372708

ABSTRACT

A highly stable lipase from Geobacillus thermocatenolatus (BTL2) and the enhanced green fluorescent protein from Aquorea victoria (EGFP) were recombinantly produced N-terminally tagged to the lectin domain of the hemolytic pore-forming toxin LSLa from the mushroom Laetiporus sulphureus . Such a domain (LSL(150)), recently described as a novel fusion tag, is based on a ß-trefoil scaffold with two operative binding sites for galactose or galactose-containing derivatives. The fusion proteins herein analyzed have enabled us to characterize the binding mode of LSL(150) to polymeric and solid substrates such as agarose beads. The lectin-fusion proteins are able to be quantitatively bound to both cross-linked and non-cross-linked agarose matrixes in a very rapid manner, resulting in a surprisingly dynamic protein distribution inside the porous beads that evolves from heterogeneous to homogeneous along the postimmobilization time. Such dynamic distribution can be related to the reversible nature of the LSL(150)-agarose interaction. Furthermore, this latter interaction is temperature dependent since it is 4-fold stronger when the immobilization takes place at 25 °C than when it does at 4 °C. The strongest lectin-agarose interaction is also quite stable under a survey of different conditions such as high temperatures (up to 60 °C) or high organic solvent concentrations (up to 60% of acetonitrile). Notably, the use of cross-linked agarose would endow the system with more robustness due to its better mechanical properties compared to the noncross-linked one. The stability of the LSL(150)-agarose interaction would prevent protein leaching during the operation process unless high pH media are used. In summary, we believe that the LSL(150) lectin domain exhibits interesting structural features as an immobilization domain that makes it suitable to reversibly immobilize industrially relevant enzymes in very simple carriers as agarose.


Subject(s)
Lectins/chemistry , Proteins/chemistry , Sepharose/chemistry , Agaricales , Base Sequence , DNA Primers , Electrophoresis, Polyacrylamide Gel , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...