Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(19)2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37837022

ABSTRACT

In the last several decades, metal oxide thin films have attracted significant attention for the development of various existing and emerging technological applications, including pH sensors. The mandate for consistent and precise pH sensing techniques has been increasing across various fields, including environmental monitoring, biotechnology, food and agricultural industries, and medical diagnostics. Metal oxide thin films grown using physical vapor deposition (PVD) with precise control over film thickness, composition, and morphology are beneficial for pH sensing applications such as enhancing pH sensitivity and stability, quicker response, repeatability, and compatibility with miniaturization. Various PVD techniques, including sputtering, evaporation, and ion beam deposition, used to fabricate thin films for tailoring materials' properties for the advanced design and development of high-performing pH sensors, have been explored worldwide by many research groups. In addition, various thin film materials have also been investigated, including metal oxides, nitrides, and nanostructured films, to make very robust pH sensing electrodes with higher pH sensing performance. The development of novel materials and structures has enabled higher sensitivity, improved selectivity, and enhanced durability in harsh pH environments. The last decade has witnessed significant advancements in PVD thin films for pH sensing applications. The combination of precise film deposition techniques, novel materials, and surface functionalization strategies has led to improved pH sensing performance, making PVD thin films a promising choice for future pH sensing technologies.

2.
Materials (Basel) ; 16(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37512346

ABSTRACT

The joining zone includes three main parts, which comprise an isothermal solidification zone (ISZ), the athermal solidification zone (ASZ), and a diffusion affected zone (DAZ). Field emission scanning electron microscopy (FESEM) was used here to observe the microstructure equipped with ultra-thin window energy dispersive X-ray spectrometer (EDS) system. Additionally, electrochemical impedance spectroscopy (EIS) and cyclic potentiodynamic polarization tests were conducted to evaluate the effect of the DB process on the corrosion resistance of the Inconel 625 superalloy. In the bonding time period, some Mo- and Cr-rich boride precipitations and Ni-rich γ-solid solution phases with hardened alloy elements, such as Mo and Cr, formed in DAZ and ASZ, respectively, because of the inter-diffusion of melting point depressants (MPD). Moreover, during cooling cycles, Ni-Cr-B, Ni-Mo-B, Ni-Si-B, and Ni-Si phase compounds were formed in the ASZ area at 1110-850 °C. The DAZ area developed by borides compound with cubic, needle, and grain boundary morphologies. The corrosion tests indicated that the DB process led to a reduction in the passive region and increased the sensitivity to pitting corrosion.

3.
Entropy (Basel) ; 24(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36554134

ABSTRACT

This paper addresses a design optimization of a gas turbine (GT) for marine applications. A gain-scheduling method incorporating a meta-heuristic optimization is proposed to optimize a thermodynamics-based model of a small GT engine. A comprehensive control system consisting of a proportional integral (PI) controller with additional proportional gains, gain scheduling, and a min-max controller is developed. The modeling of gains as a function of plant variables is presented. Meta-heuristic optimizations, namely a genetic algorithm (GA) and a whale optimization algorithm (WOA), are applied to optimize the designed control system. The results show that the WOA has better performance than that of the GA, where the WOA exhibits the minimum fitness value. Compared to the unoptimized gain, the time to reach the target of the power lever angle is significantly reduced. Optimal gain scheduling shows a stable response compared with a fixed gain, which can have oscillation effects as a controller responds. An effect of using bioethanol as a fuel has been observed. It shows that for the same input parameters of the GT dynamics model, the fuel flow increases significantly, as compared with diesel fuel, because of its low bioethanol heating value. Thus, a significant increase occurs only at the gain that depends on the fuel flow.

4.
J Funct Biomater ; 13(4)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36547527

ABSTRACT

Magnesium (Mg) alloys have recently attracted attention in biomedicine as biodegradable materials with non-toxic degradable products. Such compounds have become a frontier in the study of biodegradable materials because of their remarkable biomechanical compatibility and superior biocompatibility. The use of Mg-based implants reduces the negative consequences of permanent biological implants by eliminating the necessity for biomaterial surgery following the healing process. However, the quick deterioration, formation of considerable gas of hydrogen volumes and a rise in the body environment pH are obstacles in the application of Mg as an implant material. Hence, compelling advances for erosion resistance and biocompatibility of magnesium and its alloys are noteworthy. Surface modification may be a practical approach because it improves the erosion resistance compared with extensive preparation of a treated surface for progressed bone recovery and cell attachment. Coating produced by plasma electrolytic oxidation (PEO) seems a compelling method in order to enhance magnesium and the properties of its alloys. PEO-formed coatings cannot provide long-term protection in the physiological environment due to their porous nature. Thus, a polymer coating is applied on the porous PEO-formed coating, which is steadily applied on the surface. Polymer coatings improve the biocompatibility properties of Mg and its alloys and increase corrosion resistance. In this article, the most recent advancements in PEO/polymer composite coatings are reviewed, and the biocompatibility of such coatings is examined.

5.
Article in English | MEDLINE | ID: mdl-35055838

ABSTRACT

Increasing demand on heating, ventilation, and air-conditioning (HVAC) systems and their importance, as the respiratory system of buildings, in developing and spreading various microbial contaminations and diseases with their huge global energy consumption share have forced researchers, industries, and policymakers to focus on improving the sustainability of HVAC systems. Understanding and considering various parameters related to the sustainability of new and existing HVAC systems as the respiratory system of buildings are vital to providing healthy, energy-efficient, and economical options for various building types. However, the greatest opportunities for improving the sustainability of HVAC systems exist at the design stage of new facilities and the retrofitting of existing equipment. Considering the high available percentage of existing HVAC systems globally reveals the importance of their retrofitting. The attempt has been made to gather all important parameters that affect decision-making to select the optimum HVAC system development considerations among the various opportunities that are available for sustainability improvement.


Subject(s)
Air Pollution, Indoor , Heating , Air Conditioning , Ventilation
6.
Polymers (Basel) ; 13(14)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34301018

ABSTRACT

With the development of societies, diabetic foot ulcers have become one of the most common diseases requiring lower extremity amputation. The early treatment and prevention of diabetic foot ulcers can considerably reduce the possibility of amputation. Using footwear to redistribute and relieve plantar pressure is one of the important measures for the treatment and prevention of diabetic foot ulcers. Thus, the evaluation and prediction of the distribution of plantar pressure play an important role in designing footwears. Herein, the finite element method was used to study plantar pressure under two kinds of foot models, namely, the skeletal structure foot model and the whole foot model, to explore the influence of human bones on the pressure of the soles of the feet and obtain accurate foot pressure. Simulation results showed that under the two models, the plantar pressure and the pressure from the footwear with ethylene vinyl acetate were all reduced. The total deformation demonstrated a slight increase. These stresses are very useful as they enable the design of suitable orthotic footwear that reduces the amount of stress in individuals with diabetic foot ulcers.

7.
Materials (Basel) ; 15(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35009434

ABSTRACT

The 5083 and 6061(T6) aluminum (Al) alloys are widely used in transportation industries and the development of structural designs because of their high toughness and high corrosion resistance. Friction stir welding (FSW) was performed to produce the dissimilar welded joint of Al5083-Al 6061(T6) under different welding parameters. However, softening behavior occurred in the friction stir welded (FSWed) samples because of grain coarsening or the dissolution of precipitation-hardening phases in the welding zone. Consequently, this research intended to investigate the effect of the post-weld heat treatment (PWHT) method on the mechanical property improvement of the dissimilar FSWed Al5083-Al6061(T6) and governing abnormal grain growth (AGG) through different welding parameters. The results showed PWHT enhanced the mechanical properties of dissimilar joints of Al5083-Al6061(T6). AGG was obtained in the microstructure of PWHTed joints, but appropriate PWHT could recover the dissolved precipitation-hardening particle in the heat-affected zone of the as-welded joint. Further, the tensile strength of the dissimilar joint increased from 181 MPa in the as-welded joint to 270 MPa in the PWHTed joint, showing 93% welding efficacy.

8.
Data Brief ; 30: 105518, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32382595

ABSTRACT

Perak River basin is in Perak state of Peninsular Malaysia. In this research, the river stretch serves as water intake for domestic, agricultural and industrial purposes in Perak Tengah, Hilir Perak and Manjung regions. It is located in mixed use area whilst exposing the river to anthropogenic elements. The sampling locations were conducted at selected points of Perak River namely Tanjung Belanja Bridge (TBB), Water Treatment Plant Parit (WTPP), Parit Town discharge (PTD), Water Treatment Plant Senin (WTPS) and Water Treatment Plant Kepayang (WTPK). The existence of aromatic hydrocarbons in freshwater samples was pre-assessed via qualification analysis; specific ultraviolet absorbance (SUVA254) method at 254 nm of wavelength. The SUVA dataset were 48.38 L/mg-m (TBB), 50.54 L/mg-m (WTPP), 8.05 L/mg-m (PTD), 85.75 L/mg-m (WTPS) and 217.39 L/mg-m (WTPK). The SUVA254 values of fresh water at the river basin have exceeded the water quality standards value equivalent to 2.0 L/mg-m permitted by the Environmental Protection Agency of United States. The exceeding values were an indication of a large portion of aromatic compounds in the water. Qualification analyses evident the existence of water pollutants at treacherous concentrations for public health in freshwater samples of Perak River basin. Thus, this research has presented important findings towards further research and countermeasure for a better alternative of water treatment in Malaysia.

9.
Nanomaterials (Basel) ; 9(3)2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30889785

ABSTRACT

In this study, Ag2O was synthesized on polyethylene terephthalate fabrics by using an ultrasonic technique with Ag ion reduction in an aqueous solution. The effects of pH on the microstructure and antibacterial properties of the fabrics were evaluated. X-ray diffraction confirmed the presence of Ag2O on the fabrics. The fabrics were characterized by Fourier transform infrared spectroscopy, ultraviolet⁻visible spectroscopy, and wettability testing. Field-emission scanning electron microscopy verified that the change of pH altered the microstructure of the materials. Moreover, the antibacterial activity of the fabrics against Escherichia coli was related to the morphology of Ag2O particles. Thus, the surface structure of Ag2O particles may be a key factor of the antibacterial activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...