Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 26(19): 14216-14227, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38689542

ABSTRACT

Penta-NiN2, a novel pentagonal 2D sheet with potential nanoelectronic applications, is investigated in terms of its lattice thermal conductivity, stability, and mechanical behavior. A deep learning interatomic potential (DLP) is firstly generated from ab initio molecular dynamics (AIMD) data and then utilized for classical molecular dynamics simulations. The DLP's accuracy is verified, showing strong agreement with AIMD results. The dependence of thermal conductivity on size, temperature, and tensile strain, reveals important insights into the material's thermal properties. Additionally, the mechanical response of penta-NiN2 under uniaxial loading is examined, yielding a Young's modulus of approximately 368 GPa. The influence of vacancy defects on mechanical properties is analyzed, demonstrating a significant reduction in modulus, fracture stress, and ultimate strength. This study also investigates the influence of strain on phonon dispersion relations and phonon group velocity in penta-NiN2, shedding light on how alterations in the atomic lattice affect the phonon dynamics and, consequently, impact the thermal conductivity. This investigation showcases the ability of deep learning-based interatomic potentials in studying the properties of 2D penta-NiN2.

2.
J Invertebr Pathol ; 204: 108099, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38556196

ABSTRACT

Pseudomonas bacteria include a variety of species with distinct characteristics. Some species within this genus are known for their ability to stimulate plant growth. Recently, the potential of these bacteria in controlling insect pests has been documented. In this study, 58 bacterial isolates were purified from rhizospheres of wheat, broad bean and canola that were collected from different fields of Khuzestan province in south-west of Iran. With biochemical tests 19 non plant pathogenic pseudomonads strains were detected and their lethal effects on the eggs and larvae of Ephestia keuhniella as an important pest that infests stored products, were evaluated under laboratory conditions. For the bioassays, two concentrations of each strain were administered, and the 5th instar larvae and eggs of the pest were subjected to treatment. Mortality rates were recorded after 24 h. The results showed that all isolated Pseudomonad strains of this study had insecticidal effects against eggs and larvae of E. keuhniella. The strains AWI1, AWI2, AWI7, ABI12, ABI15 and ABI16 displayed the highest mortality rate (91.1 %, 86.2 %, 82.3 %, 84.2, 90.5 % and 90.5 %, respectively). Molecular identification and phylogeny tree according to 16 s rRNA sequencing clarified that AWI1, AWI2 belong to P. plecoglossicida, AWI5 belongs to P. lini, ABI12, ABI15 and ABI16 belong to P. taiwanensis. Moreover, the bacterial efficacy at a suspension concentration of 0.5 OD (80 %) was significantly greater than that at a concentration of 0.2 OD (63.33 %). No significant difference was detected in the response of the pest larvae or eggs to the different strains. Furthermore, olfactory trials revealed that the female parasitoid wasp Habrabracon hebetor actively avoided the infection of the treated larvae by the strains. These findings have practical implications for the development of microbiological pest control strategies.


Subject(s)
Crops, Agricultural , Larva , Pest Control, Biological , Pseudomonas , Animals , Iran , Pseudomonas/genetics , Larva/microbiology , Rhizosphere , Soil Microbiology
3.
Langmuir ; 39(43): 15222-15230, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37865920

ABSTRACT

Heat transfer through the interface between a metallic nanoparticle and an electrolyte solution has great importance in a number of applications, ranging from nanoparticle-based cancer treatments to nanofluids and solar energy conversion devices. However, the impact of the surface charge and dissolved ions on heat transfer has been scarcely explored so far. In this study, we compute the interface thermal conductance between hydrophilic and hydrophobic charged gold nanoparticles immersed in an electrolyte using equilibrium molecular dynamics simulations. Compared with an uncharged nanoparticle, we report a 3-fold increase of the Kapitza conductance for a nanoparticle surface charge of +320 mC/m2. This enhancement is shown to be approximately independent of the surface wettability, charge spatial distribution, and salt concentration. This allows us to express the Kapitza conductance enhancement in terms of the surface charge density on a master curve. Finally, we interpret the increase of the Kapitza conductance as a combined result of the shift of the water density distribution toward the charged nanoparticle and an accumulation of the counterions around the nanoparticle surface which increase the Coulombic interaction between the liquid and the charged nanoparticle. These considerations help us to apprehend the role of ions in heat transfer close to electrified surfaces.

4.
Phys Chem Chem Phys ; 25(23): 15988-16000, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37272162

ABSTRACT

With the increase in the utilization of nanomaterials in daily life, carbon nanostructures have received the attention of many researchers due to their special physical, chemical, and electrical properties. Chemical functionalization is one of the common methods to improve the thermomechanical properties of carbon nanomaterials used for specific applications. In this research, the effect of functionalization with hydrogen atoms on the mechanical properties of coiled carbon nanotubes with different geometrical dimensions has been examined. In addition, the mechanical properties of CCNTs with random and patterned distributions of hydrogen atoms have been investigated. The random distribution of hydrogen atoms up to 10% causes a sharp decrease in the mechanical properties of CCNTs such as the Young's modulus and spring constant, and increasing the percentage of H-coverage by more than 10% does not cause a significant effect on the mentioned properties. Also, unlike other carbon nanostructures, the stretchability of most CCNTs increases by increasing the percentage of hydrogenation beyond 30 percent. On investigating the effect of temperature on the properties of hydrogenated CCNTs, the temperature increase does not affect the Young's modulus and spring constant, and also there is no explicit relationship between their stretchability and temperature. Exploring the mechanical behavior of hydrogen-functionalized CCNTs via the tensile test and also how their mechanical properties change compared to those of pure CCNTs can help researchers in many applications.

5.
Phys Chem Chem Phys ; 25(18): 12923-12933, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37098706

ABSTRACT

The newly synthesized BeN4 monolayer has introduced a novel group of 2D materials called nitrogen-rich 2D materials. In the present study, the anisotropic mechanical and thermal properties of three members of this group, BeN4, MgN4, and PtN4, are investigated. To this end, a machine learning-based interatomic potential (MLIP) is developed and utilized in classical molecular dynamics (MD) simulations. Mechanical properties are calculated by extracting the stress-strain curve and thermal properties by the non-equilibrium molecular dynamics (NEMD) method. The acquired results show the anisotropic Young's modulus and lattice thermal conductivity of these materials. Generally, the Young's modulus and thermal conductivity in the armchair direction are higher than in the zigzag direction. Also, the anisotropy of Young's modulus is almost constant at every temperature for BeN4 and MgN4, while for PtN4, this parameter is decreased by increasing the temperature. The findings of this research are not only evidence of the application of machine learning in MD simulations, but also provide information on the basic anisotropic mechanical and thermal properties of these newly discovered 2D nanomaterials.

6.
Sci Rep ; 13(1): 4517, 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36934145

ABSTRACT

We study the heat transfer between two nanoparticles held at different temperatures that interact through nonreciprocal forces, by combining molecular dynamics simulations with stochastic thermodynamics. Our simulations reveal that it is possible to construct nano refrigerators that generate a net heat transfer from a cold to a hot reservoir at the expense of power exerted by the nonreciprocal forces. Applying concepts from stochastic thermodynamics to a minimal underdamped Langevin model, we derive exact analytical expressions predictions for the fluctuations of work, heat, and efficiency, which reproduce thermodynamic quantities extracted from the molecular dynamics simulations. The theory only involves a single unknown parameter, namely an effective friction coefficient, which we estimate fitting the results of the molecular dynamics simulation to our theoretical predictions. Using this framework, we also establish design principles which identify the minimal amount of entropy production that is needed to achieve a certain amount of uncertainty in the power fluctuations of our nano refrigerator. Taken together, our results shed light on how the direction and fluctuations of heat flows in natural and artificial nano machines can be accurately quantified and controlled by using nonreciprocal forces.

7.
J Phys Chem B ; 126(3): 670-678, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35015542

ABSTRACT

In this study, the thermal relaxation of the 20 naturally occurring amino acids in water and in the protein lysozyme is investigated using transient nonequilibrium molecular dynamics simulations. By modeling the thermal relaxation process, the relaxation times of the amino acids in water occurs over a time scale covering 2-5 ps. For the hydrophobic amino acids, the relaxation time is controlled by the size of the hydrocarbon side chain, while for hydrophilic amino acids, the number of hydrogen bonds does not significantly affect the time scales of the heat dissipation. Our results show that the interfacial thermal conductance at the amino acid-water interface is in the range of 40-80 MW m-2 K-1. Hydrophobic and aromatic amino acids tend to have a lower interfacial thermal conductance. Notably, we show that amino acids can be correlated with their thermal relaxation times and molar masses, into simply connected phases with the same hydrophilicity, hydrophobicity, and aromaticity. The thermal relaxation slows down by a factor of up to five in the protein relative to that in water. In the case of the hydrophobic amino acids in the protein lysozyme, the slow down in the thermal relaxation relative to that in water appears to be controlled primarily by the size of the side chain.


Subject(s)
Amino Acids , Molecular Dynamics Simulation , Amino Acids/chemistry , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Proteins/chemistry , Water/chemistry
8.
J Chem Phys ; 155(17): 174701, 2021 Nov 07.
Article in English | MEDLINE | ID: mdl-34742212

ABSTRACT

Nanofluids-dispersions of nanometer-sized particles in a liquid medium-have been proposed for a wide variety of thermal management applications. It is known that a solid-like nanolayer of liquid of typical thicknesses of 0.5-1 nm surrounding the colloidal nanoparticles can act as a thermal bridge between the nanoparticle and the bulk liquid. Yet, its effect on the nanofluid viscosity has not been elucidated so far. In this article, we compute the local viscosity of the nanolayer using equilibrium molecular dynamics based on the Green-Kubo formula. We first assess the validity of the method to predict the viscosity locally. We apply this methodology to the calculation of the local viscosity in the immediate vicinity of a metallic nanoparticle for a wide range of solid-liquid interaction strength, where a nanolayer of thickness 1 nm is observed as a result of the interaction with the nanoparticle. The viscosity of the nanolayer, which is found to be higher than its corresponding bulk value, is directly dependent on the solid-liquid interaction strength. We discuss the origin of this viscosity enhancement and show that the liquid density increment alone cannot explain the values of the viscosity observed. Rather, we suggest that the solid-like structure of the distribution of the liquid atoms in the vicinity of the nanoparticle contributes to the nanolayer viscosity enhancement. Finally, we observe a failure of the Stokes-Einstein relation between viscosity and diffusion close to the wall, depending on the liquid-solid interaction strength, which we rationalize in terms of the hydrodynamic slip.

9.
Environ Entomol ; 50(6): 1393-1399, 2021 12 17.
Article in English | MEDLINE | ID: mdl-34595525

ABSTRACT

The pink stalk borer, Sesamia cretica Led. (Lepidoptera: Noctuidae), is one of the most important sugarcane pests in many regions of the world, causing severe damage to sugarcane every year. This insect has a specialized form of the auditory organ called the tympanal organ, and ultrasound can be employed as a potential tactic employed in physical control strategy against the pest. The present study evaluates the efficacy of ultrasound in controlling the pest in laboratory conditions. For this purpose, the repellent properties of various ultrasonic frequencies ranging from 21 to 100 kHz with 0.5 kHz intervals and wave shapes, including Sin(x), Cos(x) square, and sawtooth, were studied in choice experiments on the moths. The repellent effects of ultrasonic waves at frequencies 39.5 and 37.5 kHz were more significant than other frequencies in male and female moths, respectively. Furthermore, there was no significant difference between the repellent properties of different wave shapes. In non-choice experiments, the effects of the most repellent ultrasonic treatment, at frequency 37.5 kHz, on biological characteristics of various life stages and distribution patterns of the moths were investigated. The results showed that the ultrasonic treatment causes substantial reductions in many biological parameters of the immature life stages of pests, including longevity, weight, survival rate, and fecundity. Moreover, the pattern indicated that the moths tended to escape from the ultrasound. The findings of this study can be employed for manufacturing the ultrasonic repeller to be used in sugarcane fields.


Subject(s)
Moths , Saccharum , Animals , Female , Male
10.
Biomed Microdevices ; 23(3): 41, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34379212

ABSTRACT

Despite great developments in inertial microfluidics, there is still a lack of knowledge to precisely define the particles' behavior in the microchannels. In the present study, as a prerequisite to experimental studies, numerical simulations have been used to study the capture efficiency of target particles in the contraction-expansion microchannel, aiming to provide an estimation of the conditions at which the channel performs best. Fluid analysis based on Navier-Stokes equations is conducted using the finite element method to determine the streamlines and vortices. The highest capture efficiency for 10, 15, and 19-micron particles occurs when the center of the vortex is approximately in the middle of the wide section (at the flow rate of 0.35 ml/min). In addition to investigating the effect of particle diameter and input flow rate, the effect of channel geometry parameters (channel height and initial length of the channel) on particle trapping has also been studied. Also, to consider great interest in separating different-sized bioparticles from a sample, a three-stage platform has been designed to separate four types of bone marrow cells and evaluate the possibility of using contraction-expansion channels in this application.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Bone Marrow Cells , Feasibility Studies , Particle Size
11.
Bull Entomol Res ; 111(5): 628-636, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34001296

ABSTRACT

The cotton whitefly, Bemisia tabaci Gen. (Hem., Aleyrodidae), is a key pest of many vegetables. Entomopathogenic fungi are promising microbial control agents against B. tabaci, but limited information is available concerning indigenous Iranian isolates. In this study, three isolates of Akanthomyces lecanii (PAL6, PAL7, and PAL8) and one isolate of A. muscarius (AGM5) were obtained from citrus hemipteran pests, Pulvinaria aurantii Cock. and Aphis gossypii Glover, in Mazandaran province, northern Iran. The isolates were then morphologically and molecularly identified. The efficacies of five different agar media for vegetative growth and conidiation of each isolate were determined. Potato dextrose agar was the medium on which the fungal mycelia developed at a relatively high rate. However, the highest rate of conidiation was found on Sabouraud dextrose agar. To determine the effects of the isolates on B. tabaci, a dose-response bioassay was carried out to estimate lethal concentration (LC50) and lethal time (LT50) values of each fungal isolate to second instar nymphs. The mean LC50 values of A. lecanii isolates ranged from 4.22 × 106 to 7.35 × 1013 conidia ml-1 at 5 to 7 days after the treatment. For A. muscarius, the values varied from 9.2 × 104 to 8.7 × 1010 conidia ml-1 at 5 to 7 days after the treatment. The lowest and the highest mean LC50 values were observed for A. mucarius (AGM5) and A. lecanii (isolate PAL6), respectively. The mean LT50 values of A. lecanii and A. muscarius isolates were 7.1-9.0 and 4.9-7.2 days, respectively. The LT50 values of A. muscarius were significantly lower than the other isolates. Overall, all isolates, especially A. muscarius (AGM5), exhibited appropriate potential as a biological control agent against B. tabaci.


Subject(s)
Biological Control Agents , Hemiptera/microbiology , Hypocreales/classification , Hypocreales/physiology , Animals , Aphids/microbiology , Biological Assay , Cucumis sativus , Hypocreales/genetics , Hypocreales/pathogenicity , Iran
12.
Phys Rev E ; 103(1-1): 013310, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33601553

ABSTRACT

Low thermal conductivity of polymers, which is one of the considerable drawbacks of commonly used composite structures, has been the focus of many researchers aiming to achieve high-performance polymer-based nanocomposites through the inclusion of highly thermally conductive fillers inside the polymer matrices. Thus, in the present study, a multiscale scheme using nonequilibrium molecular dynamics and the finite element method is developed to explore the impact of different nanosized fillers (carbon-nitride and graphene) on the effective thermal conductivity of polyethylene-based nanocomposites. We show that the thermal conductivity of amorphous polyethylene at room temperature using the reactive bond order interatomic potential is nearly 0.36±0.05W/mK. Also, the atomistic results predict that, compared to the C_{3}N and graphene nanosheets, the C_{2}N nanofilm presents a much stronger interfacial thermal conductance with polyethylene. Furthermore, the results indicate that the effective thermal conductivity values of C_{2}N-polyethylene, C_{3}N-polyethylene, and graphene-polyethylene nanocomposite, at constant volume fractions of 1%, are about 0.47, 0.56, and 0.74W/mK, respectively. In other words, the results of our models reveal that the thermal conductivity of fillers is the dominant factor that defines the effective thermal conductivity of nanocomposites.

13.
Nanotechnology ; 31(28): 285707, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32217831

ABSTRACT

We investigate thermal rectification and thermal resistance in a hybrid pillared-graphene and graphene (PGG) system by both molecular dynamics (MD) simulation and a continuum model. First, the thermal conductivity of both pillared-graphene and graphene is calculated by employing MD simulation and Fourier's law. Our results show that the thermal conductivity of the pillared-graphene is much smaller than that of graphene by one order of magnitude. Next, by applying positive and negative temperature gradients along the longitudinal direction of the PGG, the thermal rectification is examined. The MD results indicate that for the lengths in the range of 3686 nm, the thermal rectification remains almost constant (~3%-5%). We have also studied the phonon density of states (DOS) on both sides of the interface of PGG. The DOS curves show that there is phonon scattering at low frequencies that depends on the imposed temperature gradient direction in the system. Therefore, we can introduce the PGG as a thermal rectifier at room temperature. Furthermore, next, we also explore the temperature distribution over the PGG by using the continuum model. The results obtained from the continuum model predict the MD results, such as the temperature distribution in the upper half-layer and lower full-layer graphene, the temperature gap, and also the thermal resistance at the interface. This study could help in the design of chip coolers, and phononic devices such as thermal nanodiodes.

14.
J Econ Entomol ; 113(3): 1513-1518, 2020 06 06.
Article in English | MEDLINE | ID: mdl-32006015

ABSTRACT

The carob moth, Spectrobates ceratoniae Zeller, is the most destructive pest of pomegranate groves of Iran. Seasonal population dynamics of the pest was studied in pomegranate orchards of Sirvan, Ilam province, in southwestern Iran for 2 yr (2016/2017). Sampling distribution of the pest larvae on pomegranate fruits was evaluated by Taylor's power law and Iwao's patchiness index, and a fixed-precision sequential sampling plan of the pest was developed using Green's model. The adult population peaked in June. The activity period of the larvae was observed from June to October and peaked in October. Sampling distribution of the larvae on pomegranate fruits was random. Estimated optimum sample sizes ranged from 1 to 44 and 1 to 16 fruits at precision levels of 0.25 and 0.1, respectively.


Subject(s)
Moths , Pomegranate , Animals , Fruit , Iran , Population Dynamics , Seasons
15.
Nanoscale ; 11(45): 21799-21810, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31691704

ABSTRACT

On-going prediction and synthesis of two-dimensional materials attract remarkable attention to engineer high performance intended devices. Through this, comprehensive and detailed uncovering of the material properties could be accelerated to achieve this goal. Hexagonal boron arsenide (h-BAs), a graphene counterpart, is among the most attractive 2D semiconductors. In this work, our objective is to explore the mechanical, electronic, and thermal properties of h-BAs. We found that this novel 2D material can show a high elastic modulus of 260 GPa, which is independent of the loading direction. We also observed that this system shows a direct and narrow band-gap of 1.0 eV, which is highly desirable for electronic applications. The focus of our investigation is to gain an in-depth understanding of the thermal transport along the monolayer h-BAs and further tune the thermal conductivity by strain engineering. In this regard, the thermal conductivity of a stress-free and pristine monolayer was predicted to be 180.2 W m-1 K-1, which can be substantially enhanced to 375.0 W m-1 K-1 and 406.2 W m-1 K-1, with only 3% straining along the armchair and zigzag directions, respectively. The underlying mechanism for such a remarkable boosting of thermal conductivity in h-BAs was correlated to the fact that stretching makes the flexural out-of-plane mode the dominant heat carrier. Our results not only improve the understanding concerning the heat transfer in h-BAs nanosheets but also offer possible new routes to drastically improve the thermal conductivity, which can play critical roles in thermal management systems.

16.
J Mol Model ; 25(5): 141, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31044274

ABSTRACT

The Eringen's nonlocal elasticity theory is employed to examine the free vibration of a rotating cantilever single-layer graphene sheet (SLGS) under low and high temperature conditions. The governing equations of motion and the related boundary conditions are obtained through Hamilton's principle based on the first-order shear deformation theory (FSDT) of nanoplates. The generalized differential quadrature method (GDQM) is utilized to solve the nondimensional equations of motion. The molecular dynamics (MD) simulation is conducted, and fundamental frequencies of the rotating cantilever square SLGS are computed using the fast Fourier transform (FFT). The comparison of MD and GDQM results leads to finding the appropriate value of the nonlocal parameter for the first time. As an interesting result, this value of the nonlocal parameter is independent of the angular velocity. Results indicate that increases in various parameters, such as the angular velocity, hub radius, nonlocal parameter, and temperature changes in low temperature conditions, leads the first and the second frequencies to increase. In addition, it can be seen that the influence of the hub radius or nonlocal parameters on frequencies cannot be ignored in high angular velocities. Moreover, it is not possible to neglect the angular velocity or nonlocal parameter in high hub radius. The results show that the influence of parameters such as setting angle or nonlocal parameter on the first and the second frequencies increases when some parameters increase, such as the angular velocity, hub radius or temperature change. Graphical abstract (a) A schematic of a rotating cantilever nanoplate. (b) A schematic of cantilever armchair SLGS simulated by MD.

17.
Sci Rep ; 9(1): 5684, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30952974

ABSTRACT

During the fabrication process of large scale silicene, through common chemical vapor deposition (CVD) technique, polycrystalline films are quite likely to be produced, and the existence of Kapitza thermal resistance along grain boundaries could result in substantial changes of their thermal properties. In the present study, the thermal transport along polycrystalline silicene was evaluated by performing a multiscale method. Non-equilibrium molecular dynamics simulations (NEMD) was carried out to assess the interfacial thermal resistance of various constructed grain boundaries in silicene. The effects of tensile strain and the mean temperature on the interfacial thermal resistance were also examined. In the following stage, the effective thermal conductivity of polycrystalline silicene was investigated considering the effects of grain size and tensile strain. Our results indicate that the average values of Kapitza conductance at grain boundaries at room temperature were estimated to be nearly 2.56 × 109 W/m2 K and 2.46 × 109 W/m2 K through utilizing Tersoff and Stillinger-Weber interatomic potentials respectively. Also, in spite of the mean temperature, whose increment does not change Kapitza resistance, the interfacial thermal resistance could be controlled by applying strain. Furthermore, it was found that by tuning the grain size of polycrystalline silicene, its thermal conductivity could be modulated up to one order of magnitude.

18.
J Chem Phys ; 150(11): 114701, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30901998

ABSTRACT

Heat transfer between a silver nanoparticle and surrounding water has been studied using molecular dynamics (MD) simulations. The thermal conductance (Kapitza conductance) at the interface between a nanoparticle and surrounding water has been calculated using four different approaches: transient with/without temperature gradient (internal thermal resistance) in the nanoparticle, steady-state non-equilibrium, and finally equilibrium simulations. The results of steady-state non-equilibrium and equilibrium are in agreement but differ from the transient approach results. MD simulation results also reveal that in the quenching process of a hot silver nanoparticle, heat dissipates into the solvent over a length-scale of ∼2 nm and over a time scale of less than 5 ps. By introducing a continuum solid-like model and considering a heat conduction mechanism in water, it is observed that the results of the temperature distribution for water shells around the nanoparticle agree well with the MD results. It is also found that the local water thermal conductivity around the nanoparticle is greater by about 50% than that of bulk water. These results have important implications for understanding heat transfer mechanisms in nanofluid systems and also for cancer photothermal therapy, wherein an accurate local description of heat transfer in an aqueous environment is crucial.

19.
Phys Chem Chem Phys ; 21(5): 2507-2512, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30656341

ABSTRACT

The rate of heat dissipation from a 2D nanostructure strongly depends on the interfacial thermal conductance with its substrate. In this paper, the interfacial thermal conductance of carbon-nitride 2D nanostructures (C3N, C2N, C3N4's) with silica substrates was investigated using transient molecular dynamics simulations. It was found that a 2D nanostructure with higher thermal conductivity, has a lower value of interfacial thermal conductance with the silica substrate. The thermal conductivity of suspended carbon-nitride 2D nanostructures was also calculated using the Green-Kubo formalism and compared with that of graphene as a reference structure. It was found that the thermal conductivities of C3N, C2N, C3N4 (s-triazine) and C3N4 (tri-triazine) are respectively 62%, 4%, 4% and 2% that of graphene; while their interfacial thermal conductances with silica are 113%, 171%, 212% and 188% that of graphene. These different behaviors of the thermal conductivity and the interfacial thermal conductance with the substrate may be important in the thermal management of carbon-nitride 2D nanostructures in nanoelectronics.

20.
J Econ Entomol ; 111(2): 931-941, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29365154

ABSTRACT

Aphis spiraecola Patch, Aphis gossypii Glover, and Toxoptera aurantii Boyer de Fonscolombe are three important aphid pests of citrus orchards. In this study, spatial distributions of the aphids on two orange species, Satsuma mandarin and Thomson navel, were evaluated using Taylor's power law and Iwao's patchiness. In addition, a fixed-precision sequential sampling plant was developed for each species on the host plant by Green's model at precision levels of 0.25 and 0.1. The results revealed that spatial distribution parameters and therefore the sampling plan were significantly different according to aphid and host plant species. Taylor's power law provides a better fit for the data than Iwao's patchiness regression. Except T. aurantii on Thomson navel orange, spatial distribution patterns of the aphids were aggregative on both citrus. T. aurantii had regular dispersion pattern on Thomson navel orange. Optimum sample size of the aphids varied from 30-2061 and 1-1622 shoots on Satsuma mandarin and Thomson navel orange based on aphid species and desired precision level. Calculated stop lines of the aphid species on Satsuma mandarin and Thomson navel orange ranged from 0.48 to 19 and 0.19 to 80.4 aphids per 24 shoots according to aphid species and desired precision level. The performance of the sampling plan was validated by resampling analysis using resampling for validation of sampling plans (RVSP) software. This sampling program is useful for IPM program of the aphids in citrus orchards.


Subject(s)
Aphids/physiology , Citrus sinensis , Food Chain , Herbivory , Spatial Analysis , Animals , Citrus sinensis/growth & development , Iran , Population Density , Sampling Studies , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...