Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 14(1): 8738, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38627421

ABSTRACT

Brain tumor glioblastoma is a disease that is caused for a child who has abnormal cells in the brain, which is found using MRI "Magnetic Resonance Imaging" brain image using a powerful magnetic field, radio waves, and a computer to produce detailed images of the body's internal structures it is a standard diagnostic tool for a wide range of medical conditions, from detecting brain and spinal cord injuries to identifying tumors and also in evaluating joint problems. This is treatable, and by enabling the factor for happening, the factor for dissolving the dead tissues. If the brain tumor glioblastoma is untreated, the child will go to death; to avoid this, the child has to treat the brain problem using the scan of MRI images. Using the neural network, brain-related difficulties have to be resolved. It is identified to make the diagnosis of glioblastoma. This research deals with the techniques of max rationalizing and min rationalizing images, and the method of boosted division time attribute extraction has been involved in diagnosing glioblastoma. The process of maximum and min rationalization is used to recognize the Brain tumor glioblastoma in the brain images for treatment efficiency. The image segment is created for image recognition. The method of boosted division time attribute extraction is used in image recognition with the help of MRI for image extraction. The proposed boosted division time attribute extraction method helps to recognize the fetal images and find Brain tumor glioblastoma with feasible accuracy using image rationalization against the brain tumor glioblastoma diagnosis. In addition, 45% of adults are affected by the tumor, 40% of children and 5% are in death situations. To reduce this ratio, in this study, the Brain tumor glioblastoma is identified and segmented to recognize the fetal images and find the Brain tumor glioblastoma diagnosis. Then the tumor grades were analyzed using the efficient method for the imaging MRI with the diagnosis result of partially high. The accuracy of the proposed TAE-PIS system is 98.12% which is higher when compared to other methods like Genetic algorithm, Convolution neural network, fuzzy-based minimum and maximum neural network and kernel-based support vector machine respectively. Experimental results show that the proposed method archives rate of 98.12% accuracy with low response time and compared with the Genetic algorithm (GA), Convolutional Neural Network (CNN), fuzzy-based minimum and maximum neural network (Fuzzy min-max NN), and kernel-based support vector machine. Specifically, the proposed method achieves a substantial improvement of 80.82%, 82.13%, 85.61%, and 87.03% compared to GA, CNN, Fuzzy min-max NN, and kernel-based support vector machine, respectively.


Subject(s)
Brain Neoplasms , Glioblastoma , Adult , Child , Humans , Glioblastoma/diagnostic imaging , Image Processing, Computer-Assisted/methods , Brain Neoplasms/pathology , Brain/diagnostic imaging , Brain/pathology , Algorithms
3.
Sci Rep ; 14(1): 7232, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538708

ABSTRACT

Artificial intelligence-powered deep learning methods are being used to diagnose brain tumors with high accuracy, owing to their ability to process large amounts of data. Magnetic resonance imaging stands as the gold standard for brain tumor diagnosis using machine vision, surpassing computed tomography, ultrasound, and X-ray imaging in its effectiveness. Despite this, brain tumor diagnosis remains a challenging endeavour due to the intricate structure of the brain. This study delves into the potential of deep transfer learning architectures to elevate the accuracy of brain tumor diagnosis. Transfer learning is a machine learning technique that allows us to repurpose pre-trained models on new tasks. This can be particularly useful for medical imaging tasks, where labelled data is often scarce. Four distinct transfer learning architectures were assessed in this study: ResNet152, VGG19, DenseNet169, and MobileNetv3. The models were trained and validated on a dataset from benchmark database: Kaggle. Five-fold cross validation was adopted for training and testing. To enhance the balance of the dataset and improve the performance of the models, image enhancement techniques were applied to the data for the four categories: pituitary, normal, meningioma, and glioma. MobileNetv3 achieved the highest accuracy of 99.75%, significantly outperforming other existing methods. This demonstrates the potential of deep transfer learning architectures to revolutionize the field of brain tumor diagnosis.


Subject(s)
Brain Neoplasms , Deep Learning , Meningeal Neoplasms , Humans , Artificial Intelligence , Brain Neoplasms/diagnostic imaging , Brain/diagnostic imaging , Machine Learning
4.
BMC Med Imaging ; 24(1): 21, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243215

ABSTRACT

The current approach to diagnosing and classifying brain tumors relies on the histological evaluation of biopsy samples, which is invasive, time-consuming, and susceptible to manual errors. These limitations underscore the pressing need for a fully automated, deep-learning-based multi-classification system for brain malignancies. This article aims to leverage a deep convolutional neural network (CNN) to enhance early detection and presents three distinct CNN models designed for different types of classification tasks. The first CNN model achieves an impressive detection accuracy of 99.53% for brain tumors. The second CNN model, with an accuracy of 93.81%, proficiently categorizes brain tumors into five distinct types: normal, glioma, meningioma, pituitary, and metastatic. Furthermore, the third CNN model demonstrates an accuracy of 98.56% in accurately classifying brain tumors into their different grades. To ensure optimal performance, a grid search optimization approach is employed to automatically fine-tune all the relevant hyperparameters of the CNN models. The utilization of large, publicly accessible clinical datasets results in robust and reliable classification outcomes. This article conducts a comprehensive comparison of the proposed models against classical models, such as AlexNet, DenseNet121, ResNet-101, VGG-19, and GoogleNet, reaffirming the superiority of the deep CNN-based approach in advancing the field of brain tumor classification and early detection.


Subject(s)
Brain Neoplasms , Glioma , Meningeal Neoplasms , Humans , Brain , Brain Neoplasms/diagnostic imaging , Neural Networks, Computer
5.
Sci Rep ; 13(1): 17574, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37845403

ABSTRACT

The electroencephalogram (EEG) has emerged over the past few decades as one of the key tools used by clinicians to detect seizures and other neurological abnormalities of the human brain. The proper diagnosis of epilepsy is crucial due to its distinctive nature and the subsequent negative effects of epileptic seizures on patients. The classification of minimally pre-processed, raw multichannel EEG signal recordings is the foundation of this article's unique method for identifying seizures in pre-adult patients. The new method makes use of the automatic feature learning capabilities of a three-dimensional deep convolution auto-encoder (3D-DCAE) associated with a neural network-based classifier to build an integrated framework that endures training in a supervised manner to attain the highest level of classification precision among brain state signals, both ictal and interictal. A pair of models were created and evaluated for testing and assessing our method, utilizing three distinct EEG data section lengths, and a tenfold cross-validation procedure. Based on five evaluation criteria, the labelled hybrid convolutional auto-encoder (LHCAE) model, which utilizes a classifier based on bidirectional long short-term memory (Bi-LSTM) and an EEG segment length of 4 s, had the best efficiency. This proposed model has 99.08 ± 0.54% accuracy, 99.21 ± 0.50% sensitivity, 99.11 ± 0.57% specificity, 99.09 ± 0.55% precision, and an F1-score of 99.16 ± 0.58%, according to the publicly available Children's Hospital Boston (CHB) dataset. Based on the obtained outcomes, the proposed seizure classification model outperforms the other state-of-the-art method's performance in the same dataset.


Subject(s)
Deep Learning , Epilepsy , Child , Humans , Epilepsy/diagnosis , Seizures/diagnosis , Neural Networks, Computer , Brain/diagnostic imaging , Electroencephalography/methods , Signal Processing, Computer-Assisted , Algorithms
6.
Diagnostics (Basel) ; 13(18)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37761292

ABSTRACT

Breast cancer is the second leading cause of mortality among women. Early and accurate detection plays a crucial role in lowering its mortality rate. Timely detection and classification of breast cancer enable the most effective treatment. Convolutional neural networks (CNNs) have significantly improved the accuracy of tumor detection and classification in medical imaging compared to traditional methods. This study proposes a comprehensive classification technique for identifying breast cancer, utilizing a synthesized CNN, an enhanced optimization algorithm, and transfer learning. The primary goal is to assist radiologists in rapidly identifying anomalies. To overcome inherent limitations, we modified the Ant Colony Optimization (ACO) technique with opposition-based learning (OBL). The Enhanced Ant Colony Optimization (EACO) methodology was then employed to determine the optimal hyperparameter values for the CNN architecture. Our proposed framework combines the Residual Network-101 (ResNet101) CNN architecture with the EACO algorithm, resulting in a new model dubbed EACO-ResNet101. Experimental analysis was conducted on the MIAS and DDSM (CBIS-DDSM) mammographic datasets. Compared to conventional methods, our proposed model achieved an impressive accuracy of 98.63%, sensitivity of 98.76%, and specificity of 98.89% on the CBIS-DDSM dataset. On the MIAS dataset, the proposed model achieved a classification accuracy of 99.15%, a sensitivity of 97.86%, and a specificity of 98.88%. These results demonstrate the superiority of the proposed EACO-ResNet101 over current methodologies.

7.
Comput Intell Neurosci ; 2022: 8722476, 2022.
Article in English | MEDLINE | ID: mdl-36052054

ABSTRACT

The difficulty or cost of obtaining data or labels in applications like medical imaging has progressed less quickly. If deep learning techniques can be implemented reliably, automated workflows and more sophisticated analysis may be possible in previously unexplored areas of medical imaging. In addition, numerous characteristics of medical images, such as their high resolution, three-dimensional nature, and anatomical detail across multiple size scales, can increase the complexity of their analysis. This study employs multiconvolutional transfer learning (MCTL) for applying deep learning to small medical imaging datasets in an effort to address these issues. Multiconvolutional transfer learning is a model based on transfer learning that enables deep learning with small datasets. In order to learn new features on a smaller target dataset, an initial baseline is used in the transfer learning process. In this study, 3D MRI images of brain tumors are classified using a convolutional autoencoder method. In order to use unenhanced Magnetic Resonance Imaging (MRI) for clinical diagnosis, expensive and invasive contrast-enhancing procedures must be performed. MCTL has been shown to increase accuracy by 1.5%, indicating that small targets are more easily detected with MCTL. This research can be applied to a wide range of medical imaging and diagnostic procedures, including improving the accuracy of brain tumor severity diagnosis through the use of MRI.


Subject(s)
Brain Neoplasms , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain Neoplasms/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Machine Learning , Magnetic Resonance Imaging/methods
8.
Comput Math Methods Med ; 2022: 8131193, 2022.
Article in English | MEDLINE | ID: mdl-35991144

ABSTRACT

The novel coronavirus 2019 (COVID-19) disease is a pandemic which affects thousands of people throughout the world. It has rapidly spread throughout India since the first case in India was reported on 30 January 2020. The official report says that totally 4, 11,773 cases are positive, 2, 28,307 recovered, and the country reported 12,948 deaths as of 21 June 2020. Vaccination is the only way to prevent the spreading of COVID-19 disease. Due to various reasons, there is vaccine hesitancy across many people. Hence, the Indian government has the solution to avoid the spread of the disease by instructing their citizens to maintain social distancing, wearing masks, avoiding crowds, and cleaning your hands. Moreover, lots of poverty cases are reported due to social distancing, and hence, both the center government and the respective state governments decide to issue relief funds to all its citizens. The government is unable to maintain social distancing during the relief schemes as the population is huge and available support staffs are less. In this paper, the proposed algorithm makes use of graph theory to schedule the timing of the relief funds so that with the available support staff, the government would able to implement its relief scheme while maintaining social distancing. Furthermore, we have used LSTM deep learning model to predict the spread rate and analyze the daily positive COVID cases.


Subject(s)
COVID-19 , Deep Learning , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Masks , Pandemics/prevention & control , SARS-CoV-2
9.
Comput Math Methods Med ; 2022: 9771212, 2022.
Article in English | MEDLINE | ID: mdl-35928972

ABSTRACT

As a result of the COVID-19 outbreak, which has put the world in an unprecedented predicament, thousands of people have died. Data from structured and unstructured sources are combined to create user-friendly platforms for clinicians and researchers in an integrated bioinformatics approach. The diagnosis and treatment of COVID-19 disease can be accelerated using AI-based platforms. In the battle against the virus, however, researchers and decision-makers must contend with an ever-increasing volume of data, referred to as "big data." VGG19 and ResNet152V2 pretrained deep learning architectures were used in this study. With these datasets, we could train and fine-tune our model on lung ultrasound frames from healthy people as well as from patients with COVID-19 and pneumonia. In two separate experiments, we evaluated two different classes of predictive models: one against pneumonia and the other against non-COVID-19. COVID-19 can be detected and diagnosed accurately and efficiently using these models, according to the findings. Therefore, the use of these inexpensive and affordable deep learning methods should be considered as a reliable method for the diagnosis of COVID-19.


Subject(s)
COVID-19 , Deep Learning , Pneumonia , COVID-19 Testing , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...