Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
IUCrJ ; 11(Pt 2): 260-274, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38446458

ABSTRACT

The discovery of lytic polysaccharide monooxygenases (LPMOs), a family of copper-dependent enzymes that play a major role in polysaccharide degradation, has revealed the importance of oxidoreductases in the biological utilization of biomass. In fungi, a range of redox proteins have been implicated as working in harness with LPMOs to bring about polysaccharide oxidation. In bacteria, less is known about the interplay between redox proteins and LPMOs, or how the interaction between the two contributes to polysaccharide degradation. We therefore set out to characterize two previously unstudied proteins from the shipworm symbiont Teredinibacter turnerae that were initially identified by the presence of carbohydrate binding domains appended to uncharacterized domains with probable redox functions. Here, X-ray crystal structures of several domains from these proteins are presented together with initial efforts to characterize their functions. The analysis suggests that the target proteins are unlikely to function as LPMO electron donors, raising new questions as to the potential redox functions that these large extracellular multi-haem-containing c-type cytochromes may perform in these bacteria.


Subject(s)
Gammaproteobacteria , Oxidation-Reduction , Mixed Function Oxygenases , Polysaccharides
2.
Biochem J ; 478(14): 2927-2944, 2021 07 30.
Article in English | MEDLINE | ID: mdl-34240737

ABSTRACT

The release of glucose from lignocellulosic waste for subsequent fermentation into biofuels holds promise for securing humankind's future energy needs. The discovery of a set of copper-dependent enzymes known as lytic polysaccharide monooxygenases (LPMOs) has galvanised new research in this area. LPMOs act by oxidatively introducing chain breaks into cellulose and other polysaccharides, boosting the ability of cellulases to act on the substrate. Although several proteins have been implicated as electron sources in fungal LPMO biochemistry, no equivalent bacterial LPMO electron donors have been previously identified, although the proteins Cbp2D and E from Cellvibrio japonicus have been implicated as potential candidates. Here we analyse a small c-type cytochrome (CjX183) present in Cellvibrio japonicus Cbp2D, and show that it can initiate bacterial CuII/I LPMO reduction and also activate LPMO-catalyzed cellulose-degradation. In the absence of cellulose, CjX183-driven reduction of the LPMO results in less H2O2 production from O2, and correspondingly less oxidative damage to the enzyme than when ascorbate is used as the reducing agent. Significantly, using CjX183 as the activator maintained similar cellulase boosting levels relative to the use of an equivalent amount of ascorbate. Our results therefore add further evidence to the impact that the choice of electron source can have on LPMO action. Furthermore, the study of Cbp2D and other similar proteins may yet reveal new insight into the redox processes governing polysaccharide degradation in bacteria.


Subject(s)
Bacterial Proteins/metabolism , Cellvibrio/enzymology , Cytochrome c Group/metabolism , Mixed Function Oxygenases/metabolism , Polysaccharides, Bacterial/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biocatalysis , Cellulose/metabolism , Cellvibrio/genetics , Cytochrome c Group/chemistry , Cytochrome c Group/genetics , Hydrogen Peroxide/metabolism , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/genetics , Models, Molecular , Oligosaccharides/metabolism , Oxidation-Reduction , Oxygen/metabolism , Protein Domains , Spectrophotometry/methods , Substrate Specificity
3.
Biomater Sci ; 8(14): 3896-3906, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32539053

ABSTRACT

In order to infuse hemoglobin into the vasculature as an oxygen therapeutic or blood substitute, it is necessary to increase the size of the molecule to enhance vascular retention. This aim can be achieved by PEGylation. However, using non-specific conjugation methods creates heterogenous mixtures and alters protein function. Site-specific PEGylation at the naturally reactive thiol on human hemoglobin (ßCys93) alters hemoglobin oxygen binding affinity and increases its autooxidation rate. In order to avoid this issue, new reactive thiol residues were therefore engineered at sites distant to the heme group and the α/ß dimer/dimer interface. The two mutants were ßCys93Ala/αAla19Cys and ßCys93Ala/ßAla13Cys. Gel electrophoresis, size exclusion chromatography and mass spectrometry revealed efficient PEGylation at both αAla19Cys and ßAla13Cys, with over 80% of the thiols PEGylated in the case of αAla19Cys. For both mutants there was no significant effect on the oxygen affinity or the cooperativity of oxygen binding. PEGylation at αAla19Cys had the additional benefit of decreasing the rates of autoxidation and heme release, properties that have been considered contributory factors to the adverse clinical side effects exhibited by previous hemoglobin based oxygen carriers. PEGylation at αAla19Cys may therefore be a useful component of future clinical products.


Subject(s)
Hemoglobins , Polyethylene Glycols , Chromatography, Gel , Heme , Humans , Oxygen
4.
Free Radic Biol Med ; 134: 106-118, 2019 04.
Article in English | MEDLINE | ID: mdl-30594736

ABSTRACT

Hemoglobin (Hb)-based oxygen carriers (HBOC) are modified extracellular proteins, designed to replace or augment the oxygen-carrying capacity of erythrocytes. However, clinical results have generally been disappointing due to adverse side effects, in part linked to the intrinsic oxidative toxicity of Hb. Previously a redox-active tyrosine residue was engineered into the Hb ß subunit (ßF41Y) to facilitate electron transfer between endogenous antioxidants such as ascorbate and the oxidative ferryl heme species, converting the highly oxidizing ferryl species into the less reactive ferric (met) form. We inserted different single tyrosine mutations into the α and ß subunits of Hb to determine if this effect of ßF41Y was unique. Every mutation that was inserted within electron transfer range of the protein surface and the heme increased the rate of ferryl reduction. However, surprisingly, three of the mutations (ßT84Y, αL91Y and ßF85Y) also increased the rate of ascorbate reduction of ferric(met) Hb to ferrous(oxy) Hb. The rate enhancement was most evident at ascorbate concentrations equivalent to that found in plasma (< 100 µM), suggesting that it might be of benefit in decreasing oxidative stress in vivo. The most promising mutant (ßT84Y) was stable with no increase in autoxidation or heme loss. A decrease in membrane damage following Hb addition to HEK cells correlated with the ability of ßT84Y to maintain the protein in its oxygenated form. When PEGylated and injected into mice, ßT84Y was shown to have an increased vascular half time compared to wild type PEGylated Hb. ßT84Y represents a new class of mutations with the ability to enhance reduction of both ferryl and ferric Hb, and thus has potential to decrease adverse side effects as one component of a final HBOC product.


Subject(s)
Blood Substitutes/chemistry , Heme/chemistry , Hemoglobins/chemistry , Iron/chemistry , Oxidative Stress , Oxygen/metabolism , Tyrosine/chemistry , Animals , Ascorbic Acid/metabolism , Blood Substitutes/metabolism , Electron Transport , HEK293 Cells , Hemoglobins/genetics , Humans , Methemoglobin/chemistry , Mice , Mice, Nude , Oxidation-Reduction , Oxyhemoglobins/chemistry , Tyrosine/genetics
5.
Biosci Rep ; 38(4)2018 08 31.
Article in English | MEDLINE | ID: mdl-29802155

ABSTRACT

Hemoglobin (Hb)-based oxygen carriers (HBOCs) have been engineered to replace or augment the oxygen carrying capacity of erythrocytes. However, clinical results have generally been disappointing, in part due to the intrinsic oxidative toxicity of Hb. The most common HBOC starting material is adult human or bovine Hb. However, it has been suggested that fetal Hb may offer advantages due to decreased oxidative reactivity. Large-scale manufacturing of HBOC will likely and ultimately require recombinant sources of human proteins. We, therefore, directly compared the functional properties and oxidative reactivity of recombinant fetal (rHbF) and recombinant adult (rHbA) Hb. rHbA and rHbF produced similar yields of purified functional protein. No differences were seen in the two proteins in: autoxidation rate; the rate of hydrogen peroxide reaction; NO scavenging dioxygenase activity; and the NO producing nitrite reductase activity. The rHbF protein was: less damaged by low levels of hydrogen peroxide; less damaging when added to human umbilical vein endothelial cells (HUVEC) in the ferric form; and had a slower rate of intrinsic heme loss. The rHbA protein was: more readily reducible by plasma antioxidants such as ascorbate in both the reactive ferryl and ferric states; less readily damaged by lipid peroxides; and less damaging to phosphatidylcholine liposomes. In conclusion in terms of oxidative reactivity, there are advantages and disadvantages to the use of rHbA or rHbF as the basis for an effective HBOC.


Subject(s)
Blood Substitutes/metabolism , Fetal Hemoglobin/metabolism , Hemoglobins/metabolism , Adult , Animals , Human Umbilical Vein Endothelial Cells , Humans , Nitric Oxide/metabolism , Oxidation-Reduction , Oxidative Stress , Recombinant Proteins/metabolism
6.
Biomol NMR Assign ; 9(2): 415-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26123826

ABSTRACT

Human cytochrome c is a multi-functional protein with key roles in both the mitochondrial electron transfer chain and in apoptosis. In the latter, a complex formed between the mitochondrial phospholipid cardiolipin and cytochrome c is crucial for instigating the release of pro-apoptotic factors, including cytochrome c, from the mitochondrion into the cytosol. The G41S mutant of human cytochrome c is the only known disease-related variant of cytochrome c and causes increased apoptotic activity in patients with autosomal dominant thrombocytopenia. NMR spectroscopy can be used to investigate the interaction of human cytochrome c with cardiolipin and the structural and dynamic factors, which may contribute to enhanced apoptotic activity for the G41S mutant. We present here essentially full backbone amide resonance assignments for ferric human cytochrome c (98 %) as well as assignments of both the ferric (92 %) and ferrous (95 %) forms of the G41S mutant. Backbone amide chemical shift differences between the wild type and G41S mutant in the ferric state reveals significant changes around the mutation site, with many other amides also affected. This suggests the possibility of increased dynamics and/or a change in the paramagnetic susceptibility tensor of the G41S mutant relative to the wild type protein.


Subject(s)
Apoptosis , Cytochromes c/chemistry , Iron/chemistry , Mutant Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Humans , Mutation/genetics , Proton Magnetic Resonance Spectroscopy
7.
Biochem J ; 456(3): 441-52, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24099549

ABSTRACT

We have investigated whether the pro-apoptotic properties of the G41S mutant of human cytochrome c can be explained by a higher than wild-type peroxidase activity triggered by phospholipid binding. A key complex in mitochondrial apoptosis involves cytochrome c and the phospholipid cardiolipin. In this complex cytochrome c has its native axial Met(80) ligand dissociated from the haem-iron, considerably augmenting the peroxidase capability of the haem group upon H2O2 binding. By EPR spectroscopy we reveal that the magnitude of changes in the paramagnetic haem states, as well as the yield of protein-bound free radical, is dependent on the phospholipid used and is considerably greater in the G41S mutant. A high-resolution X-ray crystal structure of human cytochrome c was determined and, in combination with the radical EPR signal analysis, two tyrosine residues, Tyr(46) and Tyr(48), have been rationalized to be putative radical sites. Subsequent single and double tyrosine-to-phenylalanine mutations revealed that the EPR signal of the radical, found to be similar in all variants, including G41S and wild-type, originates not from a single tyrosine residue, but is instead a superimposition of multiple EPR signals from different radical sites. We propose a mechanism of multiple radical formations in the cytochrome c-phospholipid complexes under H2O2 treatment, consistent with the stabilization of the radical in the G41S mutant, which elicits a greater peroxidase activity from cytochrome c and thus has implications in mitochondrial apoptosis.


Subject(s)
Apoptosis , Cardiolipins/chemistry , Cytochromes c/chemistry , Cytochromes c/genetics , Hydrogen Peroxide/chemistry , Mutation, Missense , Amino Acid Substitution , Cardiolipins/metabolism , Cytochromes c/metabolism , Electron Spin Resonance Spectroscopy , Humans , Mitochondria/enzymology , Mitochondria/genetics , Peroxidase/chemistry , Peroxidase/genetics , Peroxidase/metabolism
8.
Biochim Biophys Acta ; 1817(5): 780-91, 2012 May.
Article in English | MEDLINE | ID: mdl-22365930

ABSTRACT

Mitochondrial cytochrome c associates with the phosphoplipid cardiolipin (CL) through a combination of electrostatic and hydrophobic interactions. The latter occurs by insertion into cytochrome c of an acyl chain, resulting in the dissociation of the axial Met-80 heme-iron ligand. The resulting five coordinate cytochrome c/CL complex has peroxidatic properties leading to peroxidation of CL and dissociation of the complex. These events are considered to be pre-apoptotic and culminate with release of cytochrome c from the mitochondria into the cytoplasm. Two distinct surface regions on cytochrome c have been suggested to mediate CL acyl chain insertion and this study has probed one of these regions. We have constructed a series of alanine mutants aimed at disrupting a surface cleft formed between residues 67-71 and 82-85. The physicochemical properties, peroxidase activity, CL binding, and kinetics of carbon monoxide (CO) binding to the ferrous cytochrome c/CL complex have been assessed for the individual mutants. Our findings reveal that the majority of mutants are capable of binding CL in the same apparent stoichiometry as the wild-type protein, with the extent to which the Met-80 ligand is bound in the ferrous cytochrome c/CL complex being mutant specific at neutral pH. Mutation of the species conserved Arg-91 residue, that anchors the cleft, results in the greatest changes to physicochemical properties of the protein leading to a change in the CL binding ratio required to effect structural changes and to the ligand-exchange properties of the ferrous cytochrome c/CL complex.


Subject(s)
Cardiolipins/metabolism , Cytochromes c/metabolism , Saccharomyces cerevisiae/metabolism , Acylation , Animals , Carbon Monoxide/metabolism , Cattle , Circular Dichroism , Hydrogen-Ion Concentration , Iron/metabolism , Kinetics , Lasers , Models, Biological , Mutant Proteins/metabolism , Oxidation-Reduction , Peroxidase/metabolism , Photolysis , Protein Binding , Spectrum Analysis , Time Factors
9.
J Biol Inorg Chem ; 16(4): 577-88, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21267610

ABSTRACT

The amino acid at position 51 in the cytochrome c(6) family is responsible for modulating over 100 mV of heme midpoint redox potential. As part of the present work, the X-ray structure of the imidazole adduct of the photosynthetic cytochrome c(6) Q51V variant from Phormidium laminosum has been determined. The structure reveals the axial Met ligand is dissociated from the heme iron but remains inside the heme pocket and the Ω-loop housing the Met ligand is stabilized through polar interactions with the imidazole and heme propionate-6. The latter is possible owing to a 180° rotation of both heme propionates upon imidazole binding. From equilibrium and kinetic studies, a Val residue at position 51 increases the stability of the Fe-S(Met) interaction and also affects the dynamics associated with imidazole binding. In this respect, the k (obs) for imidazole binding to Arabidopsis thaliana cytochrome c(6A), which has a Val at the position equivalent to position 51 in photosynthetic cytochrome c(6), was found to be independent of imidazole concentration, indicating that the binding process is limited by the Met dissociation rate constant (about 1 s(-1)). For the cytochrome c(6) Q51V variant, imidazole binding was suppressed in comparison with the wild-type protein and the V52Q variant of cytochrome c(6A) was found to bind imidazole readily. We conclude that the residue type at position 51/52 in the cytochrome c(6) family is additionally responsible for tuning the stability of the heme iron-Met bond and the dynamic properties of the ferric protein fold associated with endogenous ligand binding.


Subject(s)
Cytochromes c6/chemistry , Cytochromes c6/metabolism , Heme/chemistry , Imidazoles/chemistry , Imidazoles/metabolism , Arabidopsis/enzymology , Binding Sites , Crystallography, X-Ray , Cyanobacteria/enzymology , Cytochromes c6/classification , Heme/metabolism , Kinetics , Models, Molecular , Molecular Structure
10.
Free Radic Res ; 45(4): 439-44, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21128733

ABSTRACT

The peroxidase-type reactivity of cytochrome c is proposed to play a role in free radical production and/or apoptosis. This study describes cytochrome c catalysis of peroxide consumption by ascorbate. Under conditions where the sixth coordination position at the cytochrome c heme iron becomes more accessible for exogenous ligands (by carboxymethylation, cardiolipin addition or by partial denaturation with guanidinium hydrochloride) this peroxidase activity is enhanced. A reaction intermediate is detected by stopped-flow UV-vis spectroscopy upon reaction of guanidine-treated cytochrome c with peroxide, which resembles the spectrum of globin Compound II species and is thus proposed to be a ferryl species. The ability of physiological levels of ascorbate (10-60 µM) to interact with this species may have implications for mechanisms of cell signalling or damage that are based on cytochrome c/peroxide interactions.


Subject(s)
Ascorbic Acid , Cytochrome-c Peroxidase/metabolism , Cytochromes c/metabolism , Iron/metabolism , Mitochondria, Heart/enzymology , Animals , Apoptosis , Ascorbic Acid/metabolism , Cardiolipins/metabolism , Cattle , Free Radicals/metabolism , Guanidine/chemistry , Guanidine/metabolism , Heme/chemistry , Horses , Hydrogen Peroxide/chemistry , Kinetics , Methylation , Signal Transduction , Spectrum Analysis , Yeasts
11.
Pol J Microbiol ; 58(2): 149-54, 2009.
Article in English | MEDLINE | ID: mdl-19824399

ABSTRACT

The study aimed at screening and identifying a potential poly-beta-hydroxybutyrate (PHB) accumulating Bacillus strain and optimization of media parameters for increased PHB production by the strain. A Gram-positive bacterium that accumulated PHB was isolated from local garden soil of Bangalore. Based on morphological and physiological properties, and nucleotide sequence (about 1.5 kb) of its 16S rDNA it was identified as Bacillus thuringiensis IAM 12077. PHB production was found to be comparable to most of the Bacillus sp. reported to date. PHB production by this strain was dependent on nutrient limitation. Cell dry weight and PHB accumulation increased significantly under biphasic growth condition (from nutrient broth to nitrogen-deficient medium) as compared with growth in nutrient broth alone (from 0.32 g/l to 2.76 g/l cell dry weight; 24% to 43.37% PHB accumulation; 0.2 g/l to 1.2 g/l PHB production), with maximum accumulation at 24 h in nitrogen-deficient medium. Time course study of growth and PHB production by this strain in the nitrogen deficient medium showed that PHB production was associated with the stationary phase of growth. All the tested media containing different carbon and nitrogen sources supported growth and PHB production. Ultraviolet spectrum of the extracted polymer showed a characteristic peak at 235 nm.


Subject(s)
Bacillus thuringiensis/metabolism , Hydroxybutyrates/metabolism , Polyesters/metabolism , Bacillus thuringiensis/classification , Bacillus thuringiensis/drug effects , Bacteriological Techniques , Bioreactors , Carbon/chemistry , Carbon/pharmacology , Culture Media/chemistry , Fermentation , Nitrogen/chemistry , Nitrogen/pharmacology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...