Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
Comput Biol Chem ; 112: 108134, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38964206

ABSTRACT

Global public health is confronted with significant challenges due to the prevalence of cancer and the emergence of treatment resistance. This work focuses on the identification of cyclin-dependent kinase 2 (CDK2) through a systematic computational approach to discover novel cancer therapeutics. A ligand-based pharmacophore model was initially developed using a training set of seven potent CDK2 inhibitors. The obtained most robust model was characterized by three features: one donor (|Don|) and two acceptors (|Acc|). Screening this model against the ZINC database resulted in identifying 108 hits, which underwent further molecular docking studies. The docking results indicated binding affinity, with energy values ranging from -6.59 kcal mol⁻¹ to -7.40 kcal mol⁻¹ compared to the standard Roscovitine. The top 10 compounds (Z1-Z10) selected from the docking data were further screened for ADMET profiling, ensuring their compliance with pharmacokinetic and toxicological criteria. The top 3 compounds (Z1-Z3) chosen from the docking were subjected to Density Functional Theory (DFT) studies. They revealed significant variations in electronic properties, providing insights into the reactivity, stability, and polarity of these compounds. Molecular dynamics simulations confirmed the stability of the ligand-protein complexes, with acceptable RMSD and RMSF values. Specifically, compound Z1 demonstrated stability, around 2.4 Å, and maintained throughout the 100 ns simulation period with minimal conformational changes, stable RMSD, and consistent protein-ligand interactions.

2.
Indian J Microbiol ; 64(2): 618-634, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39011001

ABSTRACT

Natural pigments are becoming increasingly popular owing of their reliability. Microbial pigments provide an alternative to natural colours. A total of 24 fungal cultures were collected from leaf bits of Senna auriculata, with one strain (FNG1) producing an extracellular red orange pigment. Nigrospora oryzae was confirmed by using physical criteria and molecular phylogenetic study by using ITS and ß- tubulin analysis. In EtOAc, the crude red pigment was the most soluble. The TLC analysis was used to partly purify the natural pigment. The partially purified fungal pigment was used in successive bioprospecting studies. The antimicrobial activity of the partially purified sample was assessed against eight human pathogens, with Leucobacter AA7 showing the largest zone of inhibition (200-500 µg/mL). The compound's DPPH scavenging activity enhanced from 38.2 to 67.9%, with an IC50 value of 34.195 ± 2.33 µg/mL. Cancer cells were suppressed by partly pure fungal pigment, but non-cancerous HEK 293 cells were unaffected. The GC-MS analysis was used to characterize the molecule present in the partly purified pigment. In addition, the cotton textiles have the greatest staining capability for crude mycobial pigment, which dyes quickly and has a negative cytotoxicity. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01211-y.

3.
J Fluoresc ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951307

ABSTRACT

Designed and synthesized linear pyrazine-based D-π-A-π-A probe is investigated to study the colorimetric and emission properties with different polarity index solvents. Their molar extinction coefficients were estimated for each solvent. This TLP probe was investigated in THF/water binary solution aggregates, and a redshifted AIE was observed reaching a water fraction of 70%. Also, this TLP probe was applied to the multifunctional, rapid, sensitive and selective detection of acid-base (TFA/TEA) and hydrazine (N2H4) in colorimetric and fluorimetric sensors. The pyrazine unit probe demonstrated an acidochromic effect and explored the acid-sensing behavior. The TLP probe containing malononitrile functional groups has extensively detected hazardous hydrazine species due to nucleophilic attack of hydrazine at the α-position of dicyano. This TLP probe allowed the quick and fast-sensitive detection of hydrazine hydride with a low detection limit of 1.08 nM. According to the results, the mechanism was confirmed by UV-Vis, PL, NMR and MS spectra for the detection of hydrazine, and further evidence of the protonation-deprotonation process in added TFA/TEA was made by titration studies by 1H NMR. Therefore, this work can be used for test strip kits for multifunction applications.

4.
Environ Res ; 259: 119485, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38917933

ABSTRACT

Soil deterioration is a major cause of poor agricultural productivity, necessitating sufficient nutrient inputs like fertilizers and amendments for sustainable use. As one such strategy, the current study evaluates the potential of Sargassum wightii, a brown seaweed extract, as an osmopriming agent to improve seed germination, early establishment, and competent seedling performances in acidic soil. The elemental makeup of seaweed extract (BS) showed that it included major plant macro (Potassium, Nitrogen and Phosphorous), as well as micronutrients (Magnesium and Iron) and trace elements (Zinc, Copper, and Molybdenum). While seed germination was impacted by H+ ion toxicity, seeds primed with BS emerged earlier and showed a higher germination percentage (98.2%) and energy (92.4%). BS treatments enhanced seedling growth by 63% and had a positive effect on root growth (68.2%) as well as increases in root surface area (10%) and volume (67.01%). Stressed seedlings had 76.39% and 63.2% less carotenoid and chlorophyll, respectively. In seedlings treated with BS, an increase in protein and Total Soluble Sugars content of 14.56 and 7.19%, respectively, was seen. Fourier Transform-Infra Red analysis of postharvest soil indicated improved soil health with absorbance corresponding to enhanced soil water holding capacity and organic matter. Increased abscisic acid synthesis rate and associated antioxidant enzyme system (Malondialdehyde, Glutathione peroxidases and ascorbate peroxidase) activation, along with enhanced H+ adenosine triphosphate-ase and glutathione activities, help ameliorate and deport H+ ions from cells, scavenge Reactive Oxygen Species, thus protecting cells from injury. Seaweed extract successfully reduced H+-induced ion toxicities in rice by promoting their germination, physiological, metabolically, and growth parameters that could ultimately increase their productivity and yield in a sustainable and environmentally friendly manner.

5.
J Fluoresc ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935307

ABSTRACT

A newly synthesized naphthalimide-based fluorophore probe NIA was used to detect hydrazine. This probe, based on the Gabriel mechanism exhibited a highly sensitive revealing of hydrazine in naked eyes colorimetric as well as fluorescent recognition against other amines in an aqueous solution in DMSO - HEPES buffer. When hydrazine hydrate was added to the probe NIA, the absorption was red shifted from 403 nm to 520 nm. The titration studies by adding hydrazine to show two apparent isosbestic points found at 358 and 450 nm, respectively. Further, investigation of emission spectra upon addition of hydrazine hydride the emission peak at 493 nm gradually decreased up to 2.4 equiv. and when increasing the hydrazine hydride concentration from 2.4 equiv. to 4.4 equiv., the fluorescence intensity increased at 530 nm. which is exhibiting a raised ratiometric emission intensity at 530 nm. Further investigation of the selectivity of probe NIA revealed colorimetric and fluorimetric responses to interferences with other test amines. 1H NMR and HR-mass proved the Gabriel mechanism bath for detecting hazardous hydrazine by probe NIA. This probe NIA allowed the rapid and ultrasensitive detection of hydrazine hydride with a low detection limit of 0.26 nM. In view of the outstanding properties, probe NIA has been effectively performed to detect hydrazine using various techniques, including a test kit, silica support, and actual environmental water samples.

6.
Sci Rep ; 14(1): 11335, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760417

ABSTRACT

Crude oil hydrocarbons are considered major environmental pollutants and pose a significant threat to the environment and humans due to having severe carcinogenic and mutagenic effects. Bioremediation is one of the practical and promising technology that can be applied to treat the hydrocarbon-polluted environment. In this present study, rhamnolipid biosurfactant (BS) produced by Pseudomonas aeruginosa PP4 and green synthesized iron nanoparticles (G-FeNPs) from Lawsonia inermis was used to evaluate the biodegradation efficiency (BE) of crude oil. The surface analysis of G-FeNPs was carried out by using FESEM and HRTEM to confirm the size and shape. Further, the average size of the G-FeNPs was observed around 10 nm by HRTEM analysis. The XRD and Raman spectra strongly confirm the presence of iron nanoparticles with their respective peaks. The BE (%) of mixed degradation system-V (PP4+BS+G-FeNPs) was obtained about 82%. FTIR spectrum confirms the presence of major functional constituents (C=O, -CH3, C-O, and OH) in the residual oil content. Overall, this study illustrates that integrated nano-based bioremediation could be an efficient approach for hydrocarbon-polluted environments. This study is the first attempt to evaluate the G-FeNPs with rhamnolipid biosurfactant on the biodegradation of crude oil.


Subject(s)
Biodegradation, Environmental , Hydrocarbons , Petroleum , Hydrocarbons/metabolism , Hydrocarbons/chemistry , Petroleum/metabolism , Lawsonia Plant/chemistry , Lawsonia Plant/metabolism , Pseudomonas aeruginosa/metabolism , Magnetic Iron Oxide Nanoparticles/chemistry , Surface-Active Agents/metabolism , Surface-Active Agents/chemistry , Glycolipids/chemistry , Glycolipids/metabolism , Spectroscopy, Fourier Transform Infrared , Environmental Pollutants/metabolism
7.
J Fluoresc ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761323

ABSTRACT

This work established a newly designed and synthesized carbazole N-phenyl π-conjugated vinyl malononitrile (CPM) fluorescent sensor, which showed typical and remarkable redshift emission properties with different polarity index solvents. Investigative probe CPM is colorimetric and fluorimetric ultrafast and ultrasensitive detection of hazardous hydrazine in an aqueous medium. Furthermore, CPM showed colorimetric and fluorometric responses to interference tests with other amines and high selectivity for detecting hydrazine without interference with other amines in colorimetric and fluorimetric methods. This probe CPM for hydrazine was as low as the lower detection limit value of 2.21 × 10- 8 M. The probe CPM expects significant attention due to its simplicity and cost-effectiveness in detecting hazardous hydrazine. UV-vis, PL, NMR, and MS spectra confirmed the mechanism of probe CPM detection of hazardous hydrazine. However, making a piece test kit attractive for practical hydrazine vapor leak-detection applications is easy. This study can be applied to many pipeline gas transmission industries and transportation facility sectors.

8.
Biomedicines ; 12(4)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38672144

ABSTRACT

A series of novel 1,5-diaryl pyrazole derivatives targeting the COX enzyme were designed by combined ligand and structure-based approach. The designed molecules were then further subjected to ADMET and molecular docking studies. Out of 34 designed compounds, the top-10 molecules from the computation studies were synthesized, characterized, and evaluated for COX-2 inhibition and anti-cancer activity. Initially, the target compounds were screened for the protein denaturation assay. The results of the top-five molecules T2, T3, T5, T6, and T9 were further subjected to in vitro COX-2 enzymatic assay and anti-cancer activity. As far as COX-2 inhibitory activity is considered, two compounds, T3 and T5, exhibited the half maximum inhibitory concentration (IC50) at 0.781 µM and 0.781 µM respectively. Further, the two compounds T3 and T5, when evaluated for COX-1 inhibition, exhibited excellent inhibitory activity with T3 IC50 of 4.655µM and T5 with IC50 of 5.596 µM. The compound T5 showed more significant human COX-2 inhibition, with a selectivity index of 7.16, when compared with T3, which had a selectivity index of 5.96. Further, in vitro anti-cancer activity was screened against two cancer cell lines in which compounds T2 and T3 were active against A549 cell lines and T6 was active against the HepG2 cell line. Stronger binding energy was found by comparing MM-PBSA simulations with molecular docking, which suggests that compounds T3 and T5 have a better possibility of being effective compounds, in which T5 showed higher binding affinity. The results suggest that these compounds have the potential to develop effective COX-2 inhibitors as anti-cancer agents.

9.
J Fluoresc ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613711

ABSTRACT

The sensor with electron donor phenothiazine-2-carbaldehyde and electron acceptor indolium carboxylic acid, is developed with an intramolecular charge transfer transition between them. The synthesized molecule senses cyanide ion in water. The cyanide ion reacts with the molecule via nucleophilic addition in the indolium ring with a noticeable purple to colorless change in the solution observed. Also with the cyanide ion interaction, the sensor exhibits change in UV-visible absorption and fluorescence spectra. While the other ion does not show spectral and visual changes when interacts with the sensor molecule. Also the interference study reveals that the molecule is highly selective towards cyanide ion. Different source of water samples confirms the CN- ion sensing efficiency of the molecule. 1:1 interaction between the molecule PTI and cyanide ion is confirmed from the results of Jobs plot, 1H NMR and HRMS. Paper strips were prepared and this can act as a simple tool to sense cyanide ion in various water samples.

10.
J Fluoresc ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466538

ABSTRACT

A benzoxazole-coumarin-based probe BOC, was synthesized and validated for its anion sensing ability and found to be effective in recognizing cyanide ions. Upon addition of cyanide, a spontaneous color change was observed that was visible to the naked eye. The sensitization process takes place with nucleophilic addition, and the cyanide ion added to the probe disrupts the intra molecular charge transfer transition (ICT) between the donor and acceptor units, causing the pink colored probe to become yellow. Ultraviolet and fluorescence methods were applied to measure the detection limits of probes with added cyanide ions, which were found to be 3.47 µM and 2.48 nM. The stoichiometry of the probe with the cyanide ion was determined by the Job's method, NMR titration, and mass spectrometry and was found to be in a 1:1 ratio. The results obtained from the visual and UV-visible spectral studies are justified by theoretical calculations. The cyanide-loaded probe induced visual changes, which enabled the development of a test strip for field application, and the prepared strip can be used to detect the ppm level of cyanide in water samples. The developed probe, BOC, can be used to detect cyanide ions in various water samples.

11.
Environ Sci Pollut Res Int ; 31(14): 21610-21631, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38393552

ABSTRACT

Current vector control strategies based on synthetic chemicals are not eco-friendly against non-target organisms; hence, alternative approaches are highly required. Commercially purchased oil of Mentha spicata (Spearmint) and Eucalyptus citriodora (Citriodora) were examined against the medical pest Cx. quinquefasciatus (Say) and their non-toxicity on the aquatic species was evaluated. Chemical screening with gas chromatography coupled with mass spectrometry (GC-MS) analysis revealed a total of 14 and 11 compounds in Citriodora and Spearmint oils, respectively, with the highest peak (%) at carvone (70.44%) and isopulegol (30.4%). The larvicidal activity on the fourth instar larvae of Cx. quinquefasciatus showed dose-dependent mortality and significance at a 100 ppm concentration 48 h post-treatment with Citriodora (76.4%, P ≤ 0.001) and Spearmint (100%, P ≤ 0.001). Additionally, the photomicrograph of the fourth instar larvae revealed significant physical abnormalities in the head and midgut tissues post-exposure to Spearmint and Citriodora oils. Moreover, the histological assay revealed severe damage in the epithelial cells and gut lumen 2 to 24 h post-treatment. The repellency percentage of adult Culex mosquitoes was prominent across both oils at 150 ppm 210 min post-exposure. Non-target toxicity on the aquatic predator showed both essential oils (Spearmint oil (17.2%) and Citriodora oil (15.2%)) are safer at the maximum treatment (200 ppm) compared to temephos (75.4% at 1 ppm). The in silico screening of phyto-compounds derived by both essential oils with BeeTox (online server) showed no contact toxicity to the honey bee Apis mellifera. Overall, the present research revealed that Spearmint and Citriodora essential oils and their active phyto-compounds were toxic to Cx. quinquefasciatus and harmless to the aquatic predator and honey bee.


Subject(s)
Culex , Eucalyptus , Insecticides , Mentha spicata , Oils, Volatile , Bees , Animals , Mentha spicata/chemistry , Insecticides/chemistry , Mosquito Vectors , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Eucalyptus Oil , Larva
12.
Chem Biodivers ; 21(3): e202301223, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38108562

ABSTRACT

Citrus fruits have a thick outer coat which is often discarded due to its low economic value and usually contributes to the waste. So this work focused on exploring the potential pharmacological properties of the discarded citrus peels. In the present study, we extracted the essential oil from peel wastes of Citrus reticulata Blanco (CREO) from the local market. The antioxidant, antibacterial, and anticancer properties of essential oil were evaluated. The CREO exhibited a strong antioxidant property with DPPH radical scavenging, ABTS radical scavenging, H2 O2 radical scavenging, Ferric reducing antioxidant power and for Lipid peroxidation inhibition respectively. Antibacterial properties of CREO was indicated against different pathogenic microbial strains like E. coli, P. aeruginosa, S. aureus, and S. enterica in terms of disc diffusion method and minimum inhibitory concentration (MIC). Further, anticancer properties studied on breast cancer cell lines MCF7 and MDA-MB-231 showed dose-dependent cytotoxicity with IC50 of 56.67±3.12 µg/mL and 76.44±2.53 µg/mL respectively. The GC-MS analysis of CREO revealed the presence of major compounds like S-limonene, α-pinene, α-myrcene, and cis-terpinene which might have played a significant role in strong antioxidant, antibacterial and anticancer properties. The study thus identified the potential health benefits of Citrus reticulata peel waste.


Subject(s)
Citrus , Oils, Volatile , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Escherichia coli , Staphylococcus aureus , Citrus/chemistry , Anti-Bacterial Agents/pharmacology
13.
Eur J Pharmacol ; 961: 176214, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37992886

ABSTRACT

Obesity and diabetes constitute significant global health issues associated with one another. In contrast to diabetes, which is characterised by oxidative stress that enhances cellular damage and the following complications. Obesity dynamics involve chronic inflammation that promotes insulin resistance and metabolic disruptions. Anti-inflammatory and antioxidant agents, therefore, hold promise for synergistic effects, addressing inflammation and oxidative stress, key factors in managing obesity and diabetes. These agents can be utilized in novel drug delivery approaches. The complex interactions between deacetylepoxyazadiradione (DEA) and zebrafish larva subjected to metabolic impairment due to a high-fat diet (HFD) are examined in this study. The survival assay showed a significantly lower rate (79% survival rate) in the larvae exposed to HFD. Contrastingly, DEA treatment showed significant results with survival rates increasing dose-dependently (84%, 89%, and 94% at concentrations of 50 µM, 100 µM, and 150 µM, respectively). Further investigations revealed that DEA could reduce hyperlipidemic and hyperglycemic conditions in zebrafish larvae. Glucose levels significantly dropped in the DEA treatment, which was associated with a decline in larval weight, lipid accumulation, oxidative stress and apoptosis. Enzyme assays revealed higher antioxidant enzyme concentrations in DEA treated in-vivo larval models, which were associated with reduced expression of pro-inflammatory genes. In conclusion, the results demonstrate that DEA can alleviate oxidative stress and inflammation, effectively easing the diabesity-like state in zebrafish larvae. This offers potential avenues for developing DEA as a valuable drug candidate to manage the intricate diabesity condition.


Subject(s)
Antioxidants , Diabetes Mellitus , Animals , Antioxidants/pharmacology , Zebrafish/metabolism , Adipokines/metabolism , Larva/metabolism , Obesity/drug therapy , Oxidative Stress , Inflammation/drug therapy , Diet, High-Fat , Diabetes Mellitus/drug therapy
14.
Molecules ; 28(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37836717

ABSTRACT

Ethnomedicinal plants are important sources of drug candidates, and many of these plants, especially in the Western Ghats, are underexplored. Humboldtia, a genus within the Fabaceae family, thrives in the biodiversity of the Western Ghats, Kerala, India, and holds significant ethnobotanical importance. However, many Humboldtia species remain understudied in terms of their biological efficacy, while some lack scientific validation for their traditional uses. However, Humboldtia sanjappae, an underexplored plant, was investigated for the phytochemical composition of the plant, and its antioxidant, enzyme-inhibitory, anti-inflammatory, and antibacterial activities were assessed. The LC-MS analysis indicated the presence of several bioactive substances, such as Naringenin, Luteolin, and Pomiferin. The results revealed that the ethanol extract of H. sanjappae exhibited significant in vitro DPPH scavenging activity (6.53 ± 1.49 µg/mL). Additionally, it demonstrated noteworthy FRAP (Ferric Reducing Antioxidant Power) activity (8.46 ± 1.38 µg/mL). Moreover, the ethanol extract of H. sanjappae exhibited notable efficacy in inhibiting the activities of α-amylase (47.60 ± 0.19µg/mL) and ß-glucosidase (32.09 ± 0.54 µg/mL). The pre-treatment with the extract decreased the LPS-stimulated release of cytokines in the Raw 264.7 macrophages, demonstrating the anti-inflammatory potential. Further, the antibacterial properties were also evident in both Gram-positive and Gram-negative bacteria. The observed high zone of inhibition in the disc diffusion assay and MIC values were also promising. H. sanjappae displays significant anti-inflammatory, antioxidant, antidiabetic, and antibacterial properties, likely attributable to its rich composition of various biological compounds such as Naringenin, Luteolin, Epicatechin, Maritemin, and Pomiferin. Serving as a promising reservoir of these beneficial molecules, the potential of H. sanjappae as a valuable source for bioactive ingredients within the realms of nutraceutical and pharmaceutical industries is underscored, showcasing its potential for diverse applications.


Subject(s)
Fabaceae , Plants, Medicinal , Plants, Medicinal/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Luteolin , Gram-Positive Bacteria , Gram-Negative Bacteria , Phytochemicals/pharmacology , Phytochemicals/chemistry , Ethanol/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
15.
Molecules ; 28(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37687181

ABSTRACT

Plant secondary metabolites are important sources of biologically active compounds with wide pharmacological potentials. Among the different classes, the chalcones form integral pharmacologically active agents. Natural chalcones and bis-chalcones exhibit high antioxidant and anti-inflammatory properties in various experiments. Studies are also underway to explore more biologically active bis-chalcones by chemical synthesis of these compounds. In this study, the effects of six synthetic bis-chalcones were evaluated in intestinal epithelial cells (IEC-6); further, the anti-inflammatory potentials were studied in lipopolysaccharide-induced cytokine production in macrophages. The synthesized bis-chalcones differ from each other first of all by the nature of the aromatic cores (functional group substitution, and their position) and by the size of a central alicycle. The exposure of IEC-6 cells to peroxide radicals reduced the cell viability; however, pre-treatment with the bis-chalcones improved the cell viability in these cells. The mechanism of action was observed to be the increased levels of glutathione and antioxidant enzyme activities. Further, these bis-chalcones also inhibited the LPS-stimulation-induced inflammatory cytokine production in RAW 264.7 macrophages. Overall, the present study indicated the cytoprotective and anti-inflammatory abilities of synthetic bis-chalcones.


Subject(s)
Antioxidants , Chalcones , Antioxidants/pharmacology , Chalcones/pharmacology , Lipopolysaccharides/pharmacology , Cell Death , Peroxides , Cytokines
16.
Sci Total Environ ; 864: 160968, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36549541

ABSTRACT

Natural toxicants, particularly methoxy phenols (MPs) generated by wildfire lignin, can accumulate in the environment, and cause serious health hazards in living organisms. Although the toxicity of MPs such as guaiacol and catechol has recently been described, there is minimal evidence of ecotoxicological effects of syringol. As a result, this study focuses on determining the toxicity by evaluating the cytotoxic and teratogenic effects of syringol in vitro and in vivo in human embryonic kidney (HEK-293) cells and zebrafish embryos, respectively. The ecotoxicity of syringol was predicted to be 63.8 mg/L using the ECOSAR (ECOlogical Structure Activity Relationship) prediction tool, and molecular docking analysis was used to determine the interaction and binding affinities of syringol with human apoptotic proteins in silico. In HEK-293 cells, exposure of syringol (0.5-2 mg/L) has induced cytotoxicity in a concentration-dependent manner. In zebrafish larvae, exposure of syringol (0.5-2 mg/L) has induced dose-dependent embryo toxic effects (or growth abnormalities such as yolk sac edema, pericardial edema, skeletal abnormality, and hyperemia), and changes in growth morphometrics (head height, eye, yolk sac, and pericardial area, heart rate) in particular, the heart rate of larvae was found to be significantly decreased (p<0.001). After a 4-day experimental trial, the accumulated concentration of syringol in zebrafish larvae was confirmed both qualitatively (HPLC-MS - High Performance Liquid Chromatography-Mass spectrometry) and quantitatively (LC-QTOF-HRMS - Liquid Chromatography-Quadrupolar Time of Flight-High Resolution Mass spectrometry). The craniofacial abnormalities induced by syringol exposure (0.5-2 mg/L) were detected as anomalies in cartilaginous development and locomotor deficits using alcian blue staining and locomotor analyses, respectively. Significant increase in oxidative stress parameters (including reactive oxygen species generation, lipid peroxidation, superoxide dismutase, catalase, lactate dehydrogenase and nitric oxide production) (p<0.001) and substantial decrease in glutathione levels were observed (p<0.05) in syringol exposed zebrafish larvae through enzymatic analysis. Additionally, through acridine orange staining and gene expression analyses, syringol (2 mg/L) was found to activate apoptosis in zebrafish larvae. Considering the cytotoxic, embryotoxic (teratogenicity), and oxidative stress-related apoptotic effects of syringol in the zebrafish model, syringol has the potential to emerge as a potent environmental toxicant posing serious health hazards in many living systems; however, further research on its toxicological effects on the actual ecosystem and in higher animal models is required to confirm its consequences.


Subject(s)
Teratogenesis , Wildfires , Animals , Humans , Zebrafish , Ecosystem , HEK293 Cells , Molecular Docking Simulation , Embryo, Nonmammalian , Oxidative Stress , Larva
17.
Molecules ; 27(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36500302

ABSTRACT

Plants are known to have numerous phytochemicals and other secondary metabolites with numerous pharmacological and biological properties. Among the various compounds, polyphenols, flavonoids, anthocyanins, alkaloids, and terpenoids are the predominant ones that have been explored for their biological potential. Among these, chalcones and bis-chalcones are less explored for their biological potential under in vitro experiments, cell culture models, and animal studies. In the present study, we evaluated six synthetic bis-chalcones that were different in terms of their aromatic cores, functional group substitution, and position of substitutions. The results indicated a strong antioxidant property in terms of DPPH and ABTS radical-scavenging potentials and ferric-reducing properties. In addition, compounds 1, 2, and 4 exhibited strong antibacterial activities against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella enteritidis. The disc diffusion assay values were indicative of the antibacterial properties of these compounds. Overall, the study indicated the antioxidant and antimicrobial properties of the compounds. Our preliminary studies point to the potential of this class of compounds for further in vivo investigation.


Subject(s)
Anti-Infective Agents , Chalcones , Animals , Antioxidants/pharmacology , Antioxidants/chemistry , Microbial Sensitivity Tests , Chalcones/pharmacology , Anthocyanins , Plant Extracts/chemistry , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli
18.
Microb Pathog ; 172: 105778, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36116607

ABSTRACT

Infections due to multidrug-resistant Pseudomonas aeruginosa are prevalent among patients with cystic fibrosis. The emergence of antibiotic-resistant pathogens necessitated the development of novel low-risk natural antibacterial compounds. Herbal medicines are used from dates of the origin of mankind and still serve their purpose as therapeutic agents. We demonstrated the antibacterial activity of Withaferin A extracted from the traditional herb, ashwagandha or winter cherry (Withania somnifera). Withaferin A exhibits strong antibacterial activity against P. aeruginosa with a minimum inhibitory concentration of 60 µM and minimum bactericidal concentration of 80 µM. Results obtained from membrane stabilization assay and electron microscopic analysis showed that Withaferin A acts by damaging the cell membrane of P. aeruginosa. Additionally, we investigated oxidative stress and inflammatory response after Withaferin A treatment in P. aeruginosa infected zebrafish larvae model. The results indicate that the level of ROS, and its related lipid peroxidation and apoptosis were significantly reduced after treated with Withaferin A. Consequently, an increment in antioxidant enzymes level such as superoxide dismutase (SOD) and catalase (CAT) was observed. Macrophage localization experiment showed a smaller number of localized macrophages in zebrafish, which indicates the reduction in inflammatory response. In conclusion, Withaferin A could serve as an alternative natural product in the treatment of infections caused by P. aeruginosa.


Subject(s)
Biological Products , Withania , Animals , Pseudomonas aeruginosa , Zebrafish , Catalase , Larva , Antioxidants , Reactive Oxygen Species , Anti-Bacterial Agents/pharmacology , Inflammation , Superoxide Dismutase
19.
Saudi J Biol Sci ; 29(5): 3194-3206, 2022 May.
Article in English | MEDLINE | ID: mdl-35844430

ABSTRACT

As the direct effects of climate change on the hydrological regime, Saudi Arabia has constructed more than 522 dams of various capacities as part of economic and environmental development. The study aims to assess the impact of dams on plant diversity, vegetation structure and soil in Saudi Arabia. Thirty-five stands were selected from the dams of different sizes of Saudi Arabia. Vegetation samples were established before (upstream) and after (downstream) the dam, and at the undammed (unaffected by the dam) to compare species diversity in the dam sites and undammed sites and to document the potential effects of dams on vegetation structure. A total of 151 plant species belonging to 36 families have been recorded. The vegetation associations are essentially shrubby with widespread annuals. Six novel associations were identified with the application of TWINSPAN, DCA, and CCA programs. They were named after the characteristic species as follows: VG I: Acacia gerrardii-Caralluma retrospiciens; VGII: Acacia tortilis-Maerua oblongifolia; VGIII: Lycium shawii-Farsetia aegyptiaca; VG IV: Farsetia stylosa-Cornulaca monocantha; VG V: Suaeda aegyptiaca-Salsola imbricata-Prosopis farcta and VGVI: Xanthium strumarium-Ochradenus baccatus. These plant communities are evaluated and discussed according to their floristic structure, vegetation diversity and edaphic variables. The riparian or streamside zones upstream and downstream that are periodically flooded contain highly diverse plant communities that are structured by flooding, which creates disturbance and acts as a dispersal mechanism for plants than undammed sites.

20.
Chemosphere ; 302: 134844, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35525454

ABSTRACT

Ag-doped TiO2 and Ag-doped TiO2 loaded cassava stem activated carbon (Ag: TiO2/CSAC) were prepared by sol-gel method and are labelled as AT and AT/CSAC respectively. XRD results confirmed that the anatase-TiO2 and crystalline size are decreased (12.37 nm) through the silver doping and cassava stem activated carbon loading. UV-Vis showed that the AT/CSAC makes a red shift from the absorption edge compared to pure and AT samples and then the band gap is reduced (2.81 eV). The increased surface area (238.51 m2/g) of the AT/CSAC sample through the Ag and CSAC, respectively. The consequences point out that the highest photodegradation efficiency (98.08%) of the TiO2 upon silver doping and cassava stem activated carbon loading samples were brilliant green (BG) under sunlight irradiation.


Subject(s)
Environmental Pollutants , Manihot , Catalysis , Charcoal , Silver/chemistry , Sunlight , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...