Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 15041, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951552

ABSTRACT

The Indian economy is greatly influenced by the Banana Industry, necessitating advancements in agricultural farming. Recent research emphasizes the imperative nature of addressing diseases that impact Banana Plants, with a particular focus on early detection to safeguard production. The urgency of early identification is underscored by the fact that diseases predominantly affect banana plant leaves. Automated systems that integrate machine learning and deep learning algorithms have proven to be effective in predicting diseases. This manuscript examines the prediction and detection of diseases in banana leaves, exploring various diseases, machine learning algorithms, and methodologies. The study makes a contribution by proposing two approaches for improved performance and suggesting future research directions. In summary, the objective is to advance understanding and stimulate progress in the prediction and detection of diseases in banana leaves. The need for enhanced disease identification processes is highlighted by the results of the survey. Existing models face a challenge due to their lack of rotation and scale invariance. While algorithms such as random forest and decision trees are less affected, initially convolutional neural networks (CNNs) is considered for disease prediction. Though the Convolutional Neural Network models demonstrated impressive accuracy in many research but it lacks in invariance to scale and rotation. Moreover, it is observed that due its inherent design it cannot be combined with feature extraction methods to identify the banana leaf diseases. Due to this reason two alternative models that combine ANN with scale-invariant Feature transform (SIFT) model or histogram of oriented gradients (HOG) combined with local binary patterns (LBP) model are suggested. The first model ANN with SIFT identify the disease by using the activation functions to process the features extracted by the SIFT by distinguishing the complex patterns. The second integrate the combined features of HOG and LBP to identify the disease thus by representing the local pattern and gradients in an image. This paves a way for the ANN to learn and identify the banana leaf disease. Moving forward, exploring datasets in video formats for disease detection in banana leaves through tailored machine learning algorithms presents a promising avenue for research.


Subject(s)
Machine Learning , Musa , Neural Networks, Computer , Plant Diseases , Plant Leaves , Algorithms
2.
Biomed Phys Eng Express ; 10(4)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38848695

ABSTRACT

Recent advancements in computational intelligence, deep learning, and computer-aided detection have had a significant impact on the field of medical imaging. The task of image segmentation, which involves accurately interpreting and identifying the content of an image, has garnered much attention. The main objective of this task is to separate objects from the background, thereby simplifying and enhancing the significance of the image. However, existing methods for image segmentation have their limitations when applied to certain types of images. This survey paper aims to highlight the importance of image segmentation techniques by providing a thorough examination of their advantages and disadvantages. The accurate detection of cancer regions in medical images is crucial for ensuring effective treatment. In this study, we have also extensive analysis of Computer-Aided Diagnosis (CAD) systems for cancer identification, with a focus on recent research advancements. The paper critically assesses various techniques for cancer detection and compares their effectiveness. Convolutional neural networks (CNNs) have attracted particular interest due to their ability to segment and classify medical images in large datasets, thanks to their capacity for self- learning and decision-making.


Subject(s)
Algorithms , Artificial Intelligence , Diagnostic Imaging , Image Processing, Computer-Assisted , Neoplasms , Neural Networks, Computer , Humans , Neoplasms/diagnostic imaging , Neoplasms/diagnosis , Image Processing, Computer-Assisted/methods , Diagnostic Imaging/methods , Diagnosis, Computer-Assisted/methods , Deep Learning
3.
Talanta ; 272: 125817, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38402739

ABSTRACT

In recent years, the biochemical and biological research areas have shown great interest in a smart wearable sensor because of its increasing prevalence and high potential to monitor human health in a non-invasive manner by continuous screening of biomarkers dispersed throughout the biological analytes, as well as real-time diagnostic tools and time-sensitive information compared to conventional hospital-centered system. These smart wearable sensors offer an innovative option for evaluating and investigating human health by incorporating a portion of recent advances in technology and engineering that can enhance real-time point-of-care-testing capabilities. Smart wearable sensors have emerged progressively with a mixture of multiplexed biosensing, microfluidic sampling, and data acquisition systems incorporated with flexible substrate and bodily attachments for enhanced wearability, portability, and reliability. There is a good chance that smart wearable sensors will be relevant to the early detection and diagnosis of disease management and control. Therefore, pioneering smart wearable sensors into reality seems extremely promising despite possible challenges in this cutting-edge technology for a better future in the healthcare domain. This review presents critical viewpoints on recent developments in wearable sensors in the upcoming smart digital health monitoring in real-time scenarios. In addition, there have been proactive discussions in recent years on materials selection, design optimization, efficient fabrication tools, and data processing units, as well as their continuous monitoring and tracking strategy with system-level integration such as internet-of-things, cyber-physical systems, and machine learning algorithms.


Subject(s)
Wearable Electronic Devices , Humans , Reproducibility of Results , Point-of-Care Testing , Digital Health , Technology
4.
Sci Rep ; 14(1): 2144, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38273131

ABSTRACT

Bone cancer is a rare in which cells in the bone grow out of control, resulting in destroying the normal bone tissue. A benign type of bone cancer is harmless and does not spread to other body parts, whereas a malignant type can spread to other body parts and might be harmful. According to Cancer Research UK (2021), the survival rate for patients with bone cancer is 40% and early detection can increase the chances of survival by providing treatment at the initial stages. Prior detection of these lumps or masses can reduce the risk of death and treat bone cancer early. The goal of this current study is to utilize image processing techniques and deep learning-based Convolution neural network (CNN) to classify normal and cancerous bone images. Medical image processing techniques, like pre-processing (e.g., median filter), K-means clustering segmentation, and, canny edge detection were used to detect the cancer region in Computer Tomography (CT) images for parosteal osteosarcoma, enchondroma and osteochondroma types of bone cancer. After segmentation, the normal and cancerous affected images were classified using various existing CNN-based models. The results revealed that AlexNet model showed a better performance with a training accuracy of 98%, validation accuracy of 98%, and testing accuracy of 100%.


Subject(s)
Bone Neoplasms , Deep Learning , Osteosarcoma , Humans , Early Detection of Cancer , Neural Networks, Computer , Tomography, X-Ray Computed/methods , Computers , Bone Neoplasms/diagnostic imaging , Image Processing, Computer-Assisted/methods
5.
Sensors (Basel) ; 23(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37447852

ABSTRACT

Analyzing unstable gait patterns from Electroencephalography (EEG) signals is vital to develop real-time brain-computer interface (BCI) systems to prevent falls and associated injuries. This study investigates the feasibility of classification algorithms to detect walking instability utilizing EEG signals. A 64-channel Brain Vision EEG system was used to acquire EEG signals from 13 healthy adults. Participants performed walking trials for four different stable and unstable conditions: (i) normal walking, (ii) normal walking with medial-lateral perturbation (MLP), (iii) normal walking with dual-tasking (Stroop), (iv) normal walking with center of mass visual feedback. Digital biomarkers were extracted using wavelet energy and entropies from the EEG signals. Algorithms like the ChronoNet, SVM, Random Forest, gradient boosting and recurrent neural networks (LSTM) could classify with 67 to 82% accuracy. The classification results show that it is possible to accurately classify different gait patterns (from stable to unstable) using EEG-based digital biomarkers. This study develops various machine-learning-based classification models using EEG datasets with potential applications in detecting unsteady gait neural signals and intervening by preventing falls and injuries.


Subject(s)
Algorithms , Brain-Computer Interfaces , Adult , Humans , Electroencephalography/methods , Neural Networks, Computer , Walking , Machine Learning
6.
Sensors (Basel) ; 22(19)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36236687

ABSTRACT

Body Area Network (BAN) is one of the most important techniques for observing patient health in real time and identifying and analyzing diseases. For effective implementation of this technology in practice and to benefit from it, there are some key issues which are to be addressed, and among those issues, security is highly critical. WBAN will have to operate in a cooperative networking model of multiple networks such as those of homogeneous networks, for the purpose of performance and reliability, or those of heterogeneous networks, for the purpose of data transfer and processing from application point of view, with the other networks such as the networks of hospitals, clinics, medical experts, etc. and the patient himself/herself, who may be moving from one network to another. This paper brings out the issues related to security in WBAN in separate networks as well as in multiple networks. For WBAN working in a separate network, the IEEE 802.15.6 standard is considered. For WBANs working in multiple networks, especially heterogeneous networks, the security issues are considered. Considering the advancements of artificial intelligence (AI), the paper describes how AI is addressing some challenges faced by WBAN. The paper describes possible approaches which can be taken to address these issues by modeling a security mechanism using various artificial intelligence techniques. The paper proposes game theory with Stackelberg security equilibrium (GTSSE) for modeling security in heterogeneous networks in WBAN and describes the experiments conducted by the authors and the results proving the suitability of the modeling using GTSSE.


Subject(s)
Artificial Intelligence , Wireless Technology , Computer Communication Networks , Computer Security , Game Theory , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...